Subject Index

Italic page numbers indicate figures; page number followed by “t” indicate tables.

A
Age, glial tumors and, 106
AKT/mTOR pathway inhibition, use in glial tumors, 110
Alkaline comet assay, 67
Altered consciousness, 53–54
Analgesia, pharmacological, 85–88
Anterior cervical decompression and fusion (ACDF), 203
Anterior interosseous nerve syndrome, 290
Anterolateral quadrant, 80
Anti-angiogenesis, glial tumors, 110–111
Anticonvulsants, subarachnoid aneurysm, 261–262
Antifibrinolytics, subarachnoid aneurysm, 260–261
Antigen-presenting cells, 345–346
Apoptosis, in degenerative disc disease, 23
Arteriovenous malformations (AVMs), 114–144
anterior callosal, 131, 132
brainstem, 134, 135
cerebellar, 132–134, 134
complications, 134–140, 139
decision making, 115–118
deep parasagittal, 129–131
embolization, 121–122, 122, 123t
embryology, etiology, and genetics, 114–115
general surgical technique, 124–125
intraventricular, 131t
medial temporal, 125–126, 126, 127
medial-temporal insular, 126–127, 128
natural history, 115, 115t
observation alone, 124
postoperative outcomes, 119–120t
radiosurgery, 120–121, 121t
splenial-posterior third ventricular region, 129
striato-capsulo-thalamic region, 132
surgical approaches to deep lesions, 125–134
surgical resection, 118–120
Sylvian, 125, 126
trigonal, 127–129, 129, 130
Ascending pathways, 80
Astrocytomas, 210, 210–212, 211, 212
Asymptomatic Carotid Atherosclerosis Study (ACAS), 217
Asymptomatic Carotid Stenosis, Stenting Versus Endarterectomy Trial (ACT I), 220

B
Bering, Edgar, 48–40, 50
Blood pressure, effects of DBS, 317–319, 319, 321
Brain glucose metabolism, 54, 54
Brain injury management, 295–299, 296t, 307–312
areas of future development, 297–298, 297t
three recent developments, 296–297
Brain tumors, low-grade, awake craniotomy in, 332–335, 333–334r
Brainstem, hemangioblastomas in, 327–328, 328, 329
Bryan cervical disc, 204–205, 205
Bureaucratic issues, training for neurosurgery students, 36

C
Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS), 217–218
Carotid artery stenting, 217–222
high-risk registries, 217–219, 218r
Carotid disease, endovascular therapy, 193–194
Carotid endarterectomy (CEA), 217–222
demographic and intraoperative parameters, 302t
neurocognitive changes after, 301–306
risk factors
postop day 1, 303t
postop day 30, 304t
Carotid Revascularization using Endarterectomy or Stenting Systems (CaRESS), 217, 219–220
Carotid Revascularization versus Stent Trial (CREST), 217, 220
Carpal tunnel syndrome, 285–287, 286t
failed, 287, 287
Catabolic enzymes, in degenerative disc disease, 22–23
Cavernomas, 212–214, 213, 214
Cell-based clinical trials, 90–91
Cell-based therapy, neuropathic pain, 88–90
Cell lines, glioblastoma treatment, 66
Cell proliferation, control of, 88
Central sensitzation, 77, 83, 84
Central transmission and regulation, 78–80, 79
Cerebellum, hemangioblastomas in, 327, 328, 329
Cerebral aneurysms, 157–178
etiology, 157–158
growth and rupture, 158–159
incidence, 157
natural history, 159–161
paraclooid, 166–172
pitfalls, complications, and prevention, 165–166, 165–166t
practice patterns, 165
technological advances, 174–175
treatment, 161–165, 163
Cerebral metabolism, cerebral versus global, 295–296
Cerebral perfusion pressure-based management, brain injury, 297
Cerebrospinal fluid, pulsatility, 48–52
Cervical arthroplasty, 203–207
Cervicoare, 206, 206
CHARITÉ Artificial Disc, 223–228, 224–227
Chemosensitization, gliomas, 345–351
Chou-Talalay analysis, 66
Chromaffin cell trials, 91
Chronic pain. see Pain
Clipping, subarachnoid aneurysm, 259
Coiling, subarachnoid aneurysm, 259
Comatose state, 54–55
Commissural myelotomy, 12
Computed tomography (CT), evaluation of AVMs, 116
Computer-assisted neurosurgery, 267–271
Controversial entrapments, 288–290
Controversial entrapment syndromes for painful conditions, 291–293
Controversial superimposed entrapments, 290–291
Convection-enhanced drug delivery (CED), 59–60, 60
epilepsy, 183, 183
Cordotomy, 12–15
lower cervical percutaneous, 13
percutaneous cervical, 13
Cortical and spinal-brainstem modulation, 84–85
Cortical pathways, affective attachment and, 80–81, 81
Craniofacial injury, 307–312
Craniotomy, awake, resection of low-grade brain tumors, 332–335, 333–334
Cubital tunnel syndrome, 287–288
Cyclosporin A, neuroprotective therapy in TBI, 307–312, 309, 310
Cytokines, in degenerative disc disease, 22–23
Cytotoxicity, glioblastoma treatment, 66

Deep brain stimulation (DBS)
bilateral, 181, 181
controlling the cardiovascular system with, 316–323, 318–321
Deep ulnar nerve paralysis, 288, 288
Degenerative disc disease (DDD), 18
CHARITE Artificial Disc, 223
Dendritic cells, 345–351
GM responsiveness after vaccination, 349–350
sensitization of glioma cells, 348, 348–349
treatment of intracranial gliomas, 346–347, 347
Deoxyribonucleic acid (DNA), repair proteins, 67–76
Diabetic neuropathy, 290–291
Dorsal column stimulation, 16
Dorsolateral quadrant, 80
DREZ procedure, 16

Electrodes, importance in DBS, 318–321, 321
Emergency neurosurgical care, 298
Endogenous opioids, 85
Endothelin antagonists, subarachnoid aneurysm, 262
Endovascular surgery, neurosurgeons and, 27
Endovascular therapy, evolution and future directions, 191–195
Ependymoma, 61
cervical, 210, 210–212, 211
Epidural steroid injection (ESI), in lumbar degenerative disc disease, 19
Epilepsy
bilateral deep brain stimulation, 181, 181
convection-enhanced drug delivery, 183, 183
endoscopic resection of HH, 179–180, 180
focal cooling therapy, 183
gamma knife radiosurgery for MTLE or HH, 180, 180–181
responsive neurostimulation, 182, 182–183
seizure detection software, 181, 181–182
surgical therapy for, 179–144, 180
Ethnicity, glial tumors and, 106
Evidence-based medicine, performance of lumbar fusion, 279–284
Extralesional myelotomy, 14–15

Failed back surgery syndrome
spinal cord stimulation for axial low back pain, 275–277, 276
spinal cord stimulation versus reoperation for, 272–274, 273
Fascicular transfers, 186–187, 186–187
Flow cytometry, 67
Fluid management in neurosurgery, 247–250
Focal cooling therapy, epilepsy, 183
Food and Drug Administration (FDA)
artificial discs, 20
CHARITE Artificial Disc, 223–228, 224–227
Fourth circulation, 48–52
Functional neurosurgery, 27

GADD34
after temozolomide treatment, 71–73, 73, 74
DNA repair and synergy, 71
Gamma knife radiosurgery, for MTLE or HH, 180–181
Gender differences, glial tumors and, 106
Gene-based therapy, neuropathic pain, 91–93
Genetics, in degenerative disc disease, 23
Genetic signatures, predicting patient outcome and, 60
Gene transfer, experimental evidence for, 93–95
Genotype-specific therapies, brain injury management, 298
Geography, glial tumors and, 106
Glasgow Coma Scale, 53–57
Glial tumors, 106–113
alternative delivery strategies, 111
chemotherapy, 111
epidemiology, 106–108
experimental therapeutic approaches, 111
imaging, 108–109
molecular biology, 109–110
origin, 109
targeting cell signaling pathways, 110–111
Glioblastoma multiforme (GM), 59
responsiveness to chemotherapy after vaccination, 349–350
Glioma cells
HSV-temozolomide interaction, 68, 68–69, 69
sensitization after dendritic cell therapy, 348, 348–349
Gliomas, 58–63
chemosensitization of, 345–351
dendro-endothelial precursors for, 336–344
future, 61
genetic signatures and predicting patient outcome, 60–61
malignant, 60–61
radium bomb, 58, 59
stem cells and, 61, 62
translational research, 154–156, 155, 156

© 2006 Lippincott Williams & Wilkins
Glucose, concentrations in TBI, 309
Glutamate, levels in TBI, 308, 309

Hagen-Poiseuille equation, 239
Harrington Rod construct, 229–230, 230
Head injury, 53–57
Hemangioblastomas, 212–214, 213, 214
in Von Hippel-Lindau disease, 324–331, 325, 326, 327
Hemodilution in cerebral ischemia, 238, 239
choice of an ischemic model, 241–243, 245
with a hemoglobin substitute, 238–239
improved experimental ischemic model, 243–244
isovaleric versus hypervolemic, 239–240, 241–242
mechanism of the effect of, 245–246
optimal degree, 244
optimal timing, 244–245
Hemodynamic therapy, subarachnoid aneurysm, 261
Hemoglobin substitution, hemodilution with, 238–239
Hemorrhagic stroke, endovascular therapy, 191–192, 192
Histone deacetylase inhibitors, glioblastomas, 111
Homogeneity and heterogeneity, Presidential Address, 1–9
Hydrocephalus, 48–52, 49, 51
Hypertonic saline, brain injury management, 297
Hypothalamic hamartomas (HH)
endoscopic resection, 179–180, 180
gamma knife radiosurgery for, 180–181

I
Imaging, computer-assisted, 267–268
Imaging in Carotid Angioplasty and Risk of Stroke (ICAROS), 220–221, 220a
Immune surveillance protection, 89
Immunohistochemistry, 67
Intervertebral discs, lumbar
aging, 22, 22
healthy, 22, 22
Intracranial hypertension, prophylaxis against, 295, 296
Intradiscal electrothermal therapy (IDET), 18–19
Intraoperative feedback, real-time, 268–269
Intraoperative nerve action potential (iNAP) recording, 39, 40
Intraspinal cord tumors, surgery, 209–216
Ischemic stroke, endovascular therapy, 192–193, 193

K
Kinflex C, 206, 206

L
Lactate/glucose ratio, in TBI, 311
Lactate/pyruvate ratio, in TBI, 311
Legal issues, training for neurosurgery students, 36
Limited myelotomy, 15–15
Long thoracic nerve palsy, 290, 290
Low back pain
axial, spinal cord stimulation for, 275–277, 276
evidence-based medicine for lumbar fusion, 279–284
lumbar degenerative disc, 18
Lower cervical percutaneous cordotomy, 13, 13, 14t
Lumbar degenerative disc, 18–25
Lumbar fusion, guidelines for, 279–284
Lumbar spine, degenerative cascade, 20–21, 21
Lumbar spondylosis and stenosis, 21

M
Magnesium, subarachnoid aneurysm, 262
Magnetic resonance imaging (MRI) evaluation of AVMs, 116
MEG and, 58–59, 59
Magnetic resonance spectroscopy (MRS), glioblastoma, 108–109
Magnetoencephalography (MEG), 58–59, 59
Melzack-Wall gate theory, 15
MEMS technology, 101–102, 102
Mesial temporal lobe epilepsy (MTLE)
gamma knife radiosurgery for, 180–181
surgical approach for, 179
Microsurgery, 38–39
Microvascular decompression, for trigeminal neuralgia, 313
Minimally conscious state, 54–55
Motor evoked potentials (MEP), 209
Motor racing
pathology, 148–152, 149–151
physiology, 145–148, 146–148
Multiple marginal smear biopsies, awake craniotomy in low-grade brain tumors, 332–335
Myelotomy, 12, 14

N
Nerve conduction studies and imaging, 38, 38t
Nerve conduits, 41
Nerve grafts, 39–41
Nerve injury and regeneration, 44–45, 45
Nerve repair, emerging techniques, 185–190
Nerve surgery, 38–47
coaptation alternatives, 41
complications, 43–44
end-to-side repair, 42
postoperative perspectives, 44
spinal cord implantation, 42
transfers, 42, 43t, 185–186, 186, 186t
tumors, 42–43
Nerve tubes, 187–188, 188
Neural precursors
age-induced recruitment of, 338–339, 339
antitumor impact, 340–341, 341
endogenous
specific responses, 338, 338
migrates in gliomas, 336–344, 337
glioblastoma-induced differentiation, 340, 341

© 2006 Lippincott Williams & Wilkins
lesion-specific recruitment, 339–340, 340
Neural prostheses, 270–271
Neural stem cell, for cell-based therapy, 89–90
Neurobiology, nerve injury and regeneration, 44–45, 45
Neurocognitive changes, after carotid endarterectomy, 301–306
Neuronavigation, 58–59, 59
Neuropathic pain, 77
cell-based therapy, 88–90
Neuroprotective therapies, neurochemical analytes in TBI, 307–312
Neurostimulation
electrode design, 274–275, 274–275, 275
pain of spinal origin, 272–278
Neurosurgical education, 26–37
bureaucratic issues, 33
legal issues, 33
maintaining standards of training, 254–255, 255
patient-physician interaction, 35–36
professionalism and other aspects, 33–37
provision of services, 253–254
reduced work hours, 252–256
rewards and pride of the profession, 37
teacher-trainee relationship, 32–33
United Kingdom and Ireland, 252–253, 253
what makes a good teacher, 32
Neurotization. see Nerve surgery, transfers
NMDAR activation, 79, 79
Nociception, physiological, 77
Non-viral vectors, 91–92
North American Symptomatic Endarterectomy Trial (NASCET), 217
Notch filter, 51, 51–52
Oncolytic herpes simplex virus, 67–76
Oxygen (100%), neuroprotective therapy in TBI, 307–312, 310
Pain
chronic
cell- and gene-based approaches, 86–87, 87
cell-based therapy, 88–90
endogenous opioids, 85
exogenous treatments, 85–86
future directions, 95–96
need for treatment, 85
molecular mechanisms, 77–97
spinal cord surgery for, 11–17, 14t
Pain pathways, 12
Pain transmission, functional anatomy of, 78, 78t
Paraclinoid aneurysms, 166–172, 167, 171, 173
Patient data, digital, 267
Percutaneous cervical cordotomy, 13, 13
Periaqueductal gray matter (PAG), 316
Peripheral nerve entrapment syndrome, 285–294
Peripheral sensitization, 77, 81–83, 82, 82t
molecular mechanisms, 82
Periventricular gray matter (PVG), 316
perioperative stimulation, 316–317, 317
Pharmacological analgesia, 85–88
Piriformis syndrome, 292
Plasmid, glioblastoma treatment, 66
Polymerase chain reaction (PCR), real-time, 67
Porous Coated Motion (PCM), 205, 205
Posterior interosseous nerve syndrome, 289
Posterolateral fusion, lumbar disc, 20
Postresidency education, 31–32
Presidential Address, 1–9
Prestige LP, 204, 204
Prestige ST, cervical disc replacement, 203, 203–204
Prodisc-C cervical disc, 205, 205
Professional artistry view (PA), professionalism, 34t
Professionalism, 33–37, 34t
Progenitor cells, for cell-based therapy, 89–90
Prontor syndrome, 293
Pseudomonas endotoxin TP38, 60, 60
Pudendal nerve entrapment, 292
Pyruvate, in TBI, 310
R
Radial tunnel syndrome, 292
Radiotherapy, intraspinal cord tumors, 215–216
Rapture and rupture in the liminal world, 196–202
RAS/MAPK pathway inhibitors, use in glial tumors, 110
Residency
argument for longer, 29–31
continuing postresidency education, 31–32
improvement in, 26
possible changes in, 28–29
Responsive neurostimulation, 182, 183–183
Rexed’s lamina, 79
RNA, small interfering (siRNA), 67
Robotics, computer-assisted neurosurgery, 269–270
S
Seizure detection, 181, 181–182
Sensitization, 81
Sensory evoked potentials (SEP), 209
Serum markers, brain injury management, 298
Single-step growth curves, glioblastoma treatment, 67
Spinal cord
hemangioblastomas in, 328, 328–329, 330
reimplantation of avulsed nerve roots, 42
surgery for pain, 11–17, 14t
Spinal cord stimulation, 16
FBSS with axial low back pain, 275–277, 276
pain of spinal origin, 272–278
versus reoperation for FBSS, 272–274, 273
Spinal deformity, 235–236
Spinal entry zone interruption, 16
Spinal fusion and stabilization, in modern neurosurgery, 27
Spinal reconstruction, 229–237, 230
Spinal trauma and neoplasia, 235
Spine, biomechanics, 98–105
applications, 100–101, 101
fundamentals, 98–99
future, 100
implants, 99
implant (screw) fracture, 99
laboratory, 99–100
physical and biological sciences, 101–102
pressure, 102–103, 103, 104
strain, 103, 104
three-point bending forces, 100
wedge compression fracture, 99
Spinomesencephalic tract, 80
Spinoreticular neurons, 80
Spinothalamic cordotomy, 12
Stem cells, gliomas and, 61, 62
Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy (SAPPHIRE), 217, 219
Steroids
brain injury management, 297
subarachnoid aneurysm, 262
Subarachnoid hemorrhage (SAH), 257–266, 258t
treatment, 259–264
Subcapsular nerve entrapment, 288–289

Task-related activations, group statistical maps, 55
Teacher-trainee relationship, 32–33
Technical rational view (TR), professionalism, 34t
Temozolomide, 67–76
cells treated with
G207 growth, 70, 70–71
G207 yield from, 70, 70
DNA repair genes induced by, 70–71, 71
HSV interaction in MGMT-expressing cells, 69–70, 69t, 70
HSV interaction in MGMT-negative cells, 68, 68–69
Third Circulation (Cushing), 48, 50
Thoracic outlet syndrome, 291–292
Topiramate, neuroprotective therapy in TBI, 307–312, 311
Total disc replacement (TDR), lumbar disc, 20
Transgenic peptides, 88–89
Transient receptor potential (TRP) channel, 78
Translational research, gliomas, 154–156, 155, 156
Traumatic brain injury (TBI), 295–299, 296t
neuroprotective therapies, 307–312
Trigeminal neuralgia, retreatment, 313–315, 314, 314t
Tyrosine kinase inhibitors, use in glial tumors, 110

U
University of Buffalo Neurosurgery Experience, 220

V
Vascular biology, 194
Vegetative state, 54–55
Viral vectors, 92–93
Viruses, glioblastoma treatment, 66
Von Hippel-Lindau disease
hemangioblastomas in, 324–331
McCormick scale, 325t
von Recklinghausen’s disease (VRD), 42