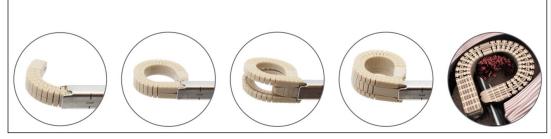
Minimally Invasive Transforaminal Lumbar Interbody Fusion with a Multi-Directional Expandable Device

Hani Malone MD; Josha Woodward BS; Richard G. Fessler MD PhD


Rush University Medical Center

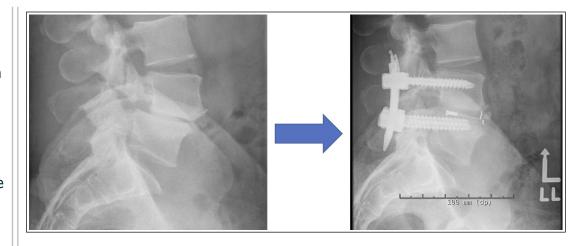
Chicago, IL

ORUSH

Introduction

Anterior and lateral approaches to the lumbar disc-space facilitate the placement of large interbody grafts, but have the potential for approach -related complications. Posterior approaches (PLIF/TLIF) have relatively little approach-related morbidity, but disc-space access and interbody device size is limited. This limitation has led to the development of many vertically-expandable interbody devices. In this study, we evaluate the safety and efficacy of implanting a lumbar interbody device that expands in both the axial and sagittal planes, thus enlarging the axial footprint achievable from a traditional posterior approach.

Learning Objectives


To evaluate the safety and efficacy of implanting a lumbar interbody device with a large circular footprint through a narrow posterior surgical corridor using novel multi-directional expanding interbody technology.

Methods

A retrospective review was completed evaluating MIS-TLIFs performed by the senior author (RF) using a multi-directional expandable interbody device shown above (Luna 3D Interbody, Benvenue Medical). Radiographic measurements were based on pre-/post- operative upright X-rays with flexion/extension views. Patient reported outcome measures were also collected.

Results

Forty-five consecutive patients were treated over 16 months. Analysis was limited to patients (n=31) with at least 6 month post-operative follow up (mean follow up 309 days, 52% women, mean age 61). All but one patient experienced improvement in pain scores (VAS pre-op mean 7.0, post-op mean 2.8, p<0.001). Disability scores improved for all patients (ODI pre-op mean 40.2, post-op mean 17.3, p<0.001). All patients with follow up >12 months (n=25)

Results (cont.)

had evidence of successful arthrodesis on dynamic flexion-extension radiographs. When present, spondylolisthesis was reduced by a mean 69.5% (4 mm). On average, disc height increased by 4.5mm and lordosis at the operative level increased by 3.3°. No instances of graft subsidence or hardware failure occurred. Complications occurred in two separate instances (1 durotomy, 1 graft migration).

LUNA 3D Cohort	Pre Op	Post Op	Change
Pain (NRPS)	7.0	2.8	4.2
Disability (ODI)	40.2	17.3	23.0
Lordosis at level (degrees)	11.2	14.4	3.3
Lumbar lordosis (degrees)	48.9	52.6	3.7
Spondylolisthesis (mm)	7.2	3.2	4 (69.5%)

Conclusion

In this case series, placement of a multi-expandable interbody cage via a MIS TLIF was safe and effective. This study is ongoing with the intent of better understanding the clinical and radiographic outcomes that can be reliably achieved with multi-expandable technology.

Disclosure: Richard Fessler is a consultant for Benvenue Medical, Inc.