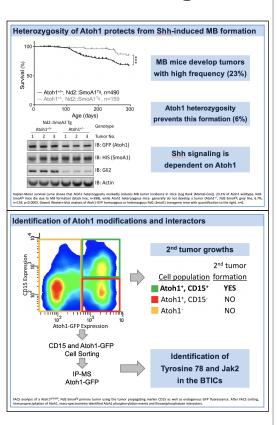
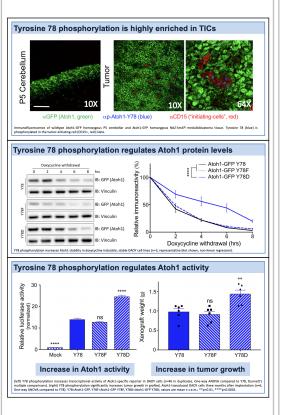


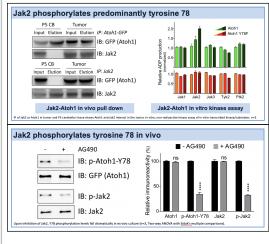
Jak2-mediated Phosphorylation of Atoh1 is Critical for Medulloblastoma Growth

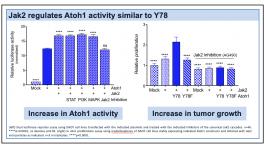

Tiemo Klisch PhD; Anna Vainshtein PhD; Akash J. Patel MD; Huda Y Zoghbi MD
Jan and Dan Duncan Neurological Research Institute
Department of Molecular and Human Genetics
Baylor College of Medicine

Baylor College of Medicine


Introduction

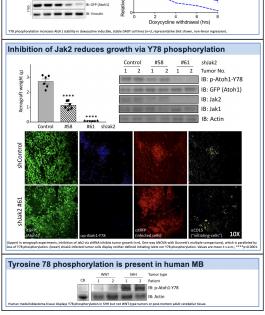
Treatment for medulloblastoma, the most common malignant brain tumor in children, remains limited to surgical resection, radiation, and traditional chemotherapy; with longterm survival as low as 50-60% for Sonic Hedgehog (Shh)-type medulloblastoma. We have shown that the transcription factor Atonal homologue 1 (Atoh1) is required for Shh-type medulloblastoma development in mice. To determine whether reducing either Atoh1 levels or activity in the tumor after its development, we studied Atoh1 dosage and modifications in Shhtype medulloblastoma.


Atoh1 is an oncogene



Tyrosine 78 phosphorylation

Jak2 phosphorylates Atoh1



Jak2 - Atoh1 signaling cascade

Tyrosine 78 is a target of Jak2

Jak2 increases Atoh1 stability similar to Y78

Learning Objectives

- 1) Atoh1 is critical for medulloblastoma growths.
- 2) Jak Signaling is a novel pathway in medulloblastoma.
- 3) Targeting multiple signaling pathways will benefit patients with medulloblastoma.

References

Klisch TJ, Vainshtein A, Patel A, Zoghbi HY. (2017) Medulloblastoma growth is dependent on Jak2-mediated phosphorylation of Atoh1. eLife 6

Conclusions

We conclude that inhibiting Jak2mediated tyrosine 78 phosphorylation could provide a viable therapy for medulloblastoma.