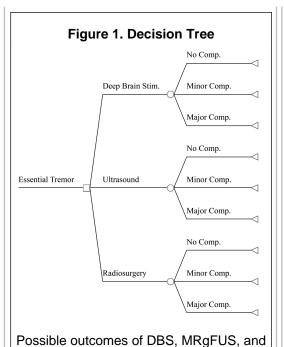


Focused Ultrasound Likely Dominates Deep Brain Stimulation and Stereotactic Radiosurgery for Medically-Refractory Essential Tremor: An Initial Decision and Cost-Effectiveness Analysis

Vinod Karthik Ravikumar BS; Jonathon Parker MD, PhD; Sherman C. Stein MD; Pejman Ghanouni MD, PhD; Casey H. Halpern MD


Departments of Neurosurgery, Neurology, and Radiology, Stanford University

Methods

PubMed and Cochrane Library searches were performed for studies of MRgFUS, Deep Brain Stimulation (DBS), and Stereotactic Radiosurgery (SRS) for ET. Pre- and post-operative tremor-related disability scores were collected from 32 studies involving 83 MRgFUS, 615 DBS, and 260 SRS cases. Utility, defined as quality of life and derived from percent change in functional disability, was calculated and Medicare reimbursement was employed as a proxy for societal cost. Medicare reimbursement rates have not yet been set for intracranial MRgFUS for ET, so we estimated reimbursements that were approximately equivalent to those of SRS to assess a cost threshold. We then constructed a decision analysis model to examine the most costeffective procedural option for ET, implementing meta-analytic techniques.

Introduction

Essential Tremor (ET) is one of the most common neurologic conditions, yet medical management is frequently suboptimal. A recent phase III study demonstrated that magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy significantly improves upper limb tremor in medically refractory ET. The present study assesses the cost-effectiveness of this novel therapy in comparison to existing procedural options.

SRS for treating medically-refractory

essential tremor

Results

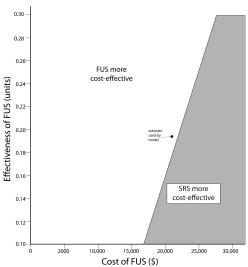
MRgFUS thalamotomy resulted in significantly higher utility scores when compared with either DBS (p< 0.001) or SRS (p< 0.001). Cost of MRgFUS was significantly less than DBS (p<0.001) but not significantly different from SRS (p=0.654). SRS was the least effective of the three procedures. Pooled patient and procedure demographical information for the three treatment groups were compared. Pairwise comparison found that SRS patients are significantly older than those with DBS (p =0.004). Other pairwise differences did not reach significance. Table 1 shows cost reimbursements (facility and physician payments) for each of the three treatments.

Table 1. Procedural Cost Elements - Medicare Reimbursement (\$US)

Treatment category		Professional/	Facility	lotai	
		technical		Amount	SD
DBS					
	unstaged				
	no perioperative complications	3,850	22,460	26,310	3262
	major perioperative complications	3,850	31,621	35,471	4398
	staged				
	no perioperative complications	20,667	22,460	43,127	5348
	major perioperative complications	20,667	31,621	52,288	6484
	perioperative reoperation	1908	0	1908	237
SRS		4,332	12,772	17,104	2121
MRg	FUS*	5103	12,929	18,032	2236
SRS	or FUS: Additional	0	31,621	31,621	3917

* Medicare reimbursement not yet determined. This value represents an estimate comprised of these codes: DBS intraoperative mapping, MRI, and SRS planning/consultation/use.

Table 2. Effectiveness and Cost Comparisons


	Differences (p-values)				
		effectiveness	cost		
·005	MRgFUS vs.SRS	<0.001	0.654		
1402	MRgFUS vs, DBS	<0.001	<0.001		
	SRS vs. DBS	<0.001	<0.001		
·003					
524					
	DBS with staging		<0.001		
.003	vs. all others				
614					
.003					
1036					

Effectiveness measured by amount of utility added by the procedure. The higher the number, the more effective.

Conclusions

These results suggest MRgFUS thalamotomy is cost-effective compared to both DBS and SRS based on the preliminary experience with this novel therapy. It is significantly less costly than DBS, assumed to cost roughly the same as SRS, and is more effective than both. Even if longer follow-up finds some decrease in the effectiveness or higher costs of MRgFUS, it will likely remain competitive with both alternatives.

Figure 2. Two-way Sensitivity Analysis

MRgFUS is predicted to be more cost effective than SRS and DBS

References

- [1] Elias JW, Lipsman N, Ondo WG, et al. A Randomized Trial of Focused Ultrasound Thalamotomy for Essential Tremor. N Engl J Med 2016; 375: 730–9.
- [2] Young RF, Li F, Vermeulen S, Meier R. Gamma Knife thalamotomy for treatment of essential tremor: long-term results. J Neurosurg 2010; 112: 1311–7.
- [3] Blomstedt P, Hariz GM, Hariz MI, Koskinen LO. Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up. Br J Neurosurg 2007; 21: 504–9.