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Introduction
Template and atlas-guidance are
fundamental aspects of stereotactic
neurosurgery.  Accurate spat ia l
correspondence between the template
and patient images is crucial so that
we can use templates to assist with
surgical implantation. We sought to
propose and validate a set of point
landmarks that could be quickly,
accurately, and reliably placed on
brain images.

Voxel overlap between regions-of-interest

(ROIs) and landmark registration error.

(1) Methods: Template evaluation
A series of neuroanatomical landmarks
were identified in consultation with an
experienced neurosurgeon. Consensus
was ach ieved on a  set  o f  32
l andmarks .  Ove r  a  se r i e s  o f
neuroanatomy tutor ia ls,  novice
participants (N=8) were trained to
perform the protocol using 3D Slicer
[1] on 3 publicly available brain
templates: Colin27 [2], MNI2009b [3],
and Agi le12v1.0 [4].  For each
template, our participants placed the
l a n d m a r k s  f o u r  t i m e s  ( 3 8 4
landmarks/partic ipant). Fiducial
localization error (FLE) was calculated
to establish reliability (Euclidean
distance derived from the group
mean). We performed K-means
clustering on the principal components
of the landmark-specific point clouds.

(1) Results: Template evaluation
Intra- and inter-rater reliability were
1.24 +/- 0.17 mm and 1.24 +/- 1.94
mm respect ive ly.  Out of  3258
landmarks placed, there were 24
(0.74%) outliers more than 10 mm
from the group mean, classified as
mislabeled and thus discarded.
Significant differences in FLE were
identified between templates

Colin27: 1.11 +/- 1.05 mm•
MNI2009b: 0.95 +/- 0.82 mm•
Agile12v1.0: 1.02 +/- 0.94 mm•

Three-dimensional visualization of

landmark locations (left). A projection of a

midsagittal slice relative to landmark points

is provided for reference (right).

(1) Results: Clustering
K-means clustering of the principal
components identified three clusters
(Figure 2). Landmark placement time
was estimated at 30 minutes.

Differences in landmark placement error

identified by K-means clustering (K=3) of

the principal components of the point cloud

distributions.

(2) Methods: OASIS1 dataset
After the training and validation phase
(Phase 1), the same participants and
the lead author (total N=9) performed
additional landmark placement on a
series of 36 brain images from the
OASIS database (30 independent
subjects; 6 additional images from the
test-retest cohort) [4].

Subset of OASIS1 Dataset

(2) Results: OASIS1 dataset
9 participants placed 12 sets of points
(=108 points sets) for a total of 3456
individual points. We identified 29
outliers out of 3456 independent
points (0.84%), defined as individual
point placements greater than 1 cm
away from the group mean. 20/29
outliers (69.0%) were the result of
mislabeled landmarks: three pairs of
lateral (non-midline) landmarks and
only one pair due to gross mislabeling
of the target landmark structure
(placement in bilateral frontal horns
rather than occipital horns). Beyond
left-right swapping, the landmarks
most susceptible to outliers were the
following landmark points: bilateral
ventral occipital horns and bilateral
indusium griseum origins. Inter-rater
reliability across the 36 scans and
landmark points was 1.23 +/- 2.81
mm. After filtering out the outliers,
the reliability improved to 1.05 +/-
1.05 mm.

Conclusions
Our landmarks provide an intuitive and
anatomically-driven framework for
establishing quality of registration
between brain images. While overall
FLE was within an acceptable range,
po in t  c loud d i s t r ibut ions  were
heterogeneous. The proposed protocol
i s  reproduc ib le ,  less  manua l ly
intensive, and more sensitive to local
errors than segmentation-based or
q u a l i t a t i v e  e v a l u a t i o n  o f
correspondence. This may hold value
for a broad number of applications
i n c l u d i n g  t emp l a t e - t o - p a t i e n t
r e g i s t r a t i o n  a n d  t e a c h i n g
n e u r o a n a t o m y .
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