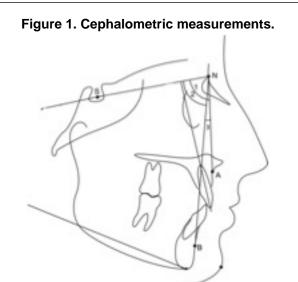


Endoscopic Endonasal Skull Base Surgery in Pediatric Patients and Impact on Midface Growth

Wendy Chen MD, MS; Shih-Dun Liu MS; Barton F Branstetter MD; Yue-Fang Chang PhD; Lindsay A Schuster DMD, MS;

Paul A. Gardner MD

Department of Plastic and Reconstructive Surgery, University of Pittsburgh Medical Center, Department of Neurological Surgery, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Department of Radiology, University of Pittsburgh Medical Center, Department of Otolaryngology, University of Pittsburgh Medical Center



Introduction

Cranial base development plays a large role in maxillary growth, including vertical and anterior dimensions, until approximately age 7. The effect of early cranial base surgery on subsequent midface growth is unknown. Cephalometrics is a well-established methodology in the oromaxillofacial discipline to analyze the craniofacial skeleton. Our goal is to determine whether early endoscopic endonasal skull base surgery has any effect on midface development.

Methods

This was a retrospective review (2000-2016) comparing patients who underwent endoscopic endonasal skull base surgery before and after age seven. Patients with imaging >1yr post-op were included. Measurements were performed by our radiology team and compared to published norms. Z-score was used to describe the number of deviation away from the norm/control. Significance was set at p<0.05.

S = Sella, N = Nasion, A = A point, most concave aspect of maxilla; B = B point, most concave aspect of mandible.
These points and composite angles describe the position of the maxilla and mandible within the craniofacial skeleton, and with each other.

Results

- Comparing the <7yo group to Bolton standard norms, no significant difference in post-operative SNA (p=0.10), SNB (p=0.14), or ANB (p=0.67). SN distance was reduced both pre- and post-operatively (SD=1.5, p=0.01and p=0.009).

- Tumor type (craniopharyngioma vs. angiofibroma vs. all other types) had no significant effect in either age group (p>0.05).

- Sex had no significant effect.

Table 1. Demographic Information.							
	<7yo Group	≧7yo Group					
Ave age at surgery	5.6уо	14.7уо					
Sex	Males, n=7 Female, n=4	Males, n=25 Females, n=12					
Ave f/u duration	5.3 years	5.2 years					
Tumor Types	55% Craniopharyngiomas 18% Chordomas 9% Dermoids	24% Fibromas 22% Craniopharyngiomas 22% Pituitary Adenomas					

Table 2. Effect of Patient Sex.

TO CO	Effect of Sex Z-score Significance									
	or Sex				M F	Significance				
Subjects			N =	Mean	SD	Median	p-value			
Male	Pre-op	SN	6	-1.29	1.52	-1.09	0.092			
		SNA	6	-0.55	1.63	-0.23	0.447			
		SNB	6	-1.63	1.78	-0.86	0.074			
		ANB	6	1.50	1.80	0.85	0.097			
	Post-op	SN	6	-1.31	1.70	-0.96	0.118			
		SNA	6	-0.04	0.83	0.12	0.901			
		SNB	6	-0.07	1.13	-0.19	0.886			
		ANB	6	0.15	2.67	-0.69	0.895			
	Pre-op	SN	4	-1.84	1.66	-2.18	0.114			
		SNA	4	-1.17	1.62	-1.39	0.246			
		SNB	3	-3.11	0.56	-3.35	*0.011			
		ANB	4	1.99	1.95	1.71	0.134			
Female	Post-op	SN	4	-2.09	1.38	-1.99	0.057			
		SNA	4	-2.06	1.36	-2.32	0.057			
		SNB	4	-2.76	2.63	-2.60	0.126			
		ANB	3	0.84	2.84	-0.41	0.660			

Table 3. Comparison of Early Surgery Group toPublished Control Values.

7 Surgery (Group vs Cont	rols		Z-Score			
		N =	Mean	SD	Median	p-valu	
Pre-op	SN	10	-1.51	1.51	-1.28	*0.012	
	SNA	10	-0.80	1.57	-0.63	0.143	
	SNB	9	-2.13	1.61	-1.90	*0.004	
	ANB	10	1.69	1.77	1.35	*0.014	
Post-op	SN	10	-1.62	1.55	-1.17	*0.009	
	SNA	10	-0.85	1.44	-0.15	0.095	
	SNB	10	-1.15	2.22	-0.48	0.137	
	ANB	9	0.38	2.57	-0.41	0.669	
Change	SN	10	-0.11	1.93	-0.05	0.862	
	SNA	10	-0.05	1.15	0.06	0.887	
	SNB	9	1.51	1.55	1.64	*0.019	
	ANB	9	-1.51	2.74	-1.99	0.137	

Table 4. Comparison of Early and Late SurgeryGroups.

Groups			Age >=7				Age <7			
			Z-score			Z-score				
		N =	Mean	SD	Median	N =	Mean	SD	Median	p-value
Pre-op	SN	22	-1.66	1.35	-1.62	10	-1.51	1.51	-1.28	0.782
	SNA	22	0.04	1.67	0.12	10	-0.80	1.57	-0.63	0.189
	SNB	22	-0.23	1.67	-0.28	9	-2.13	1.61	-1.90	*0.007
	ANB	22	0.38	1.60	0.65	10	1.69	1.77	1.35	*0.045
Post-op	SN	21	-1.36	1.43	-1.75	10	-1.62	1.55	-1.17	0.651
	SNA	21	-0.41	2.03	-0.38	10	-0.85	1.44	-0.15	0.544
	SNB	21	0.58	3.91	0.00	10	-1.15	2.22	-0.48	0.208
	ANB	21	-0.49	1.88	-0.44	9	0.38	2.57	-0.41	0.305

Conclusions

The early surgery group exhibited some abnormal pre-op measurements, but cephalometric analysis of long-term follow-up imaging revealed morphology falling within normal standard deviations. In our cohort, early endoscopic endonasal skull base surgery does not impact craniofacial development.

References

Banh et al. Impact of skull base development on endonasal endoscopic surgical corridors. J Neurosurg Pediatr. 2014;13(2):155-69.

Brockmeyere et al. Pediatric skull base surgery: Experience and outcomes in 55 patients. Pediatr Neurosurg. 2003;38(1):9-15. Kim et al. Pediatric bypasses for aneurysms and skull base tumors: short- and long-term outcomes.