

Adjacent Segment Disease After ACDF: Clinical Outcomes After First Repeat Surgery Versus Second Repeat Surgery

Mohamad Bydon MD; Risheng Xu; Mohamed Macki BA; Ting Martin Ma BA; Daniel M. Sciubba BS MD; Jean-Paul Wolinsky MD; Timothy F. Witham MD, BS; Ziya L. Gokaslan MD; Ali Bydon MD Johns Hopkins University School of Medicine (Baltimore, MD)

Introduction: The purpose of this study is to evaluate the long-term effects of repeat cervical fusion after development of adjacent segment disease (ASD).

Methods: We collected 888 patients who underwent ACDF for cervical degenerative disease over a 20-year period at a single institution. Patients were followed for an average of 94.0 ± 78.1 months after the first ACDF.

Results: Of 888 patients who underwent ACDF, 108 (12.2%) patients developed ASD, necessitating a second cervical fusion. Among these 108 patients, 27 (25%) patients later developed recurrent ASD, requiring a third cervical fusion. A 12.2% incidence of ASD after the first ACDF significantly increased to 25% after the second ACDF (p=0.0002). ASD developed significantly faster after the second ACDF (30.3 ± 24.9 months) versus the first ACDF (47.0 ± 44.9 months) [Student's t-test (p=0.01); Kaplan-Meier analysis (p<0.0001)]. Out of 77 patients who underwent a second cervical fusion via an anterior approach, 23 developed recurrent ASD requiring a third cervical fusion. In contrast, of 31 patients who had a posteriorly approached second cervical fusion, only 4 developed recurrent ASD requiring a third cervical fusion (p>0.05). Overall, patients who underwent a second anterior cervical fusion benefited neurologically via a decrease in Nurick score.

Schematic of patients treated with ACDF for cervical degenerative spinal disease.

Figure 2. Prove 2. Patients receiving a second revision surgery for recurrent adjacent segment disease were likely to require surgery after a shorter interval compared to those needing primary revision surgery after the index ACDF (p=0.0001).

without

Proportion

Patients receiving a third cervical fusion for recurrent adjacent segment disease were likely to require surgery after a shorter interval compared to those needing a second cervical fusion after the index ACDF (p<0.0001). **Conclusions:** The pathophysiology of adjacent segment disease after ACDF has yet to be fully established. The incidence of ASD development is lowest after the first ACDF. Patients who undergo a second cervical fusion develop ASD at both higher and faster rates. Moreover, ASD is more likely to occur after a second cervical fusion with an anterior approach versus posterior approach.

While patients with ASD improved neurologically after their second cervical fusion, a third cervical fusion resulted in worse neurologic function for patients approached anteriorly.

Patients receiving a second cervical fusion via an anterior approach after initial ACDF due to adjacent segment disease were more likely to require a third cervical fusion due to recurrent adjacent segment disease over time. This bordered on statistical significance (p=0.053). **Learning Objectives:** By the conclusion of this session, participants should be able to: 1) Discuss the impact of repeat cervical fusion on the development of adjacent segment disease, 2) Identify the rate of adjacent segment disease for second and third repeat cervical fusions.

References

1. Hilibrand AS, Carlson GD, Palumbo MA, Jones PK, Bohlman HH: Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81:519-528, 1999

2.Hilibrand AS, Robbins M: Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:190S-194S, 2004

3.Javedan SP, Dickman CA: Cause of adjacentsegment disease after spinal fusion. Lancet 354:530-531, 1999

4.Kowalczyk I, Lazaro BC, Fink M, Rabin D, Duggal N: Analysis of in vivo kinematics of 3 different cervical devices: Bryan disc, ProDisc-C, and Prestige LP disc. J Neurosurg Spine 15:630-635

5.Lee MJ, Dumonski M, Phillips FM, Voronov LI, Renner SM, Carandang G, et al: Disc replacement adjacent to cervical fusion: a biomechanical comparison of hybrid construct versus two-level fusion. Spine (Phila Pa 1976) 36:1932-1939

6.Matsunaga S, Kabayama S, Yamamoto T, Yone K, Sakou T, Nakanishi K: Strain on intervertebral discs after anterior cervical decompression and fusion. Spine (Phila Pa 1976) 24:670-675, 1999 7.McAfee PC, Cunningham BW, Hayes V, Sidiqi F, Dabbah M, Sefter JC, et al: Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities. Spine (Phila Pa 1976) 31:S152-160, 2006