

Preoperative Cervical Flexion-Extension Evaluation in Adult Spinal Deformity Patients with Symptomatic Neck Pain Undergoing Thoracolumbar Fusion as a Predictive Tool for Postoperative Cervical and Global Deformity

George M. Ghobrial MD; Barth A. Green MD, FACS; Joseph Gjolaj MD University of Miami, Miller School of Medicine, Departments of Neurological Surgery and Orthopedic Surgery

Introduction

Preoperative neck mobility and cervical deformity may influence alignment goals and success. The authors hypothesize that flexion-extension parameters are predictive of the maintenance of normal cervical alignment and the achievement of sagittal balance.

Methods

Perioperative radiographs for 85 patients undergoing long-segmentfusion for ASD were retrospectively reviewed. Preoperative cervical flexion-extension views were obtained in symptomatic patients. Cervical flexion and extension sagittal paramters included C1-C2 angle, C0-C2 angle, C2-C7 plumb line (CPL), and C2-C7 cervical lordosis (CL). In scoliosis studies, T1 slope (T1S) minus CL (T1S-CL), T2-T12 thoracic kyphosis (TK), L1-S1 lumbar lordosis (LL), as well as spinopelvic and global sagittal parameters. CD was defined as CPL>4cm, CL<0°, or T1S-CL<0° or =15°.

Learning Objectives

1. Understand the relationship of cervical deformity with thoracolumbar deformity.

2.Understand the utility of preoperative flexion-extension views for planning thoracolumbar fusion in adult spinal deformity patients.

Results

85 patients (mean age 64 ± 11.1) were identified (21.5 months follow-up). LL changed from 30° to 53° (p<0.0001), SVA 7.5 to 3.9 cm(p<0.0001), TPA 27° to 18°(p<0.0001), T1S-CL 10° to 14° (p=0.021), CL from 17° to 12°(p=0.013), and CPL 2.8 to 3.0 cm(p=0.172). CD increased from 41(48%) to 47(55%) patients and All symptomatic patients(24%, n=20) had CD(100%). Increased CO-C2 preoperative range of

motion correlated with suboptimal TPA(?=-.492,p=0.022). C0-C2 was an independent predictor of suboptimal TPA correction(β =-0.599,95% CI:-1.182 to -0.016,p=0.028). In patients with limited preoperative CL (CL<30°,n =11), preoperative C1-C2 range of correlated highly with suboptimal TPA correction (-.588,p=0.014), as well as C0-C2 (-.657,p=0.014). C0-C2 mobility was a predictor of TPA correction on linear regression analysis of patients with suboptimal preoperative CL (β =-0.657, p=0.028). Preoperative range of motion correlated

strongly with postoperative thoracic compensation, when normalized by the number of remaining

Conclusions

Preoperative cervical flexion-extension radiographs aid in identifying patients at risk for suboptimal deformity correction. An increased preoperative upper cervical range of motion (C0-C2, C1-C2) is

predictive of a suboptimal global deformity correction.

References

Oh T, Scheer JK, Eastlack R, et al. Cervical compensatory alignment changes following correction of adult thoracic deformity: a multicenter experience in 57 patients with a 2-year follow-up. J Neurosurg Spine 2015;22:658-65.

Smith JS, Lafage V, Schwab FJ, et al. Prevalence and type of cervical deformity among 470 adults with thoracolumbar deformity. Spine (Phila Pa 1976) 2014;39:E1001-9.

Protopsaltis T, Bronsard N, Soroceanu A, et al. Cervical sagittal deformity develops after PJK in adult thoracolumbar deformity correction: radiographic analysis utilizing a novel global sagittal angular parameter, the CTPA. Eur Spine J 2016.

Passias PG, Oh C, Jalai CM, et al. Predictive Model for Cervical Alignment and Malalignment Following Surgical Correction of Adult Spinal Deformity. Spine (Phila Pa 1976) 2016;41:E1096-103.

Scheer JK, Passias PG, Sorocean AM, et al. Association between preoperative cervical sagittal deformity and inferior outcomes at 2-year follow-up in patients with adult thoracolumbar deformity: analysis of 182 patients. J Neurosurg Spine 2016;24:108-15.

unfused thoracic vertebral segments (C1-C2 ?=-.762, p<0.0001,CL