

# **Urgent EC-IC Bypass for Symptomatic Atherosclerotic Ischemic Stroke**

Tetsuyoshi Horiuchi MD; Kazuhiro Hongo MD; Junpei Nitta Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Japan



### Introduction

Previous studies have shown that extracranial-intracranial (EC-IC) bypass surgery has no preventive effect of subsequent ipsilateral ischemic stroke in patients with symptomatic atherosclerotic internal carotid occlusion and hemodynamic cerebral ischemia. However, few studies have assessed whether an urgent EC-IC bypass surgery is an effective treatment for main trunk stenosis or occlusion in acute stage.

#### **Methods**

The authors retrospectively reviewed 58 consecutive patients who underwent urgent EC-IC bypass for symptomatic stenosis or occlusion at internal carotid artery or middle cerebral artery between January 2003 and December 2011. Clinical characteristics and neuroimagings were evaluated and analyzed.

## Results

Based on preoperative angiogram, the responsible lesions were internal carotid artery in 19 (32.8%) patients and middle cerebral artery in 39 (67.2%). No hemorrhagic complication occurred. Sixty nine percent of patients showed an improvement of neurological function after surgery and 74.1% of patients had favorable outcome. Unfavorable outcome was associated with insufficient collateral flow and new infarction after bypass surgery.

## **Conclusions**

Although EC-IC anastomosis for acute ischemic stroke is still debatable, it may be a good option for medcationresistance stenoocclusive disease.

## Table1

Table 1. Demographic data in 58 patients undergoing urgent EC-IC bypass

| Characteristic               | Value (%) |
|------------------------------|-----------|
| Left-sided lesions           | 34 (58.6) |
| Preoperative symptoms        |           |
| Conscious disturbance        | 38 (65.5) |
| Motor weakness               | 43 (74.1) |
| Aphasia                      | 20 (34.5) |
| Cognitive disturbance        | 7 (12.1)  |
| Crescendo TIA                | 5 (8.6)   |
| Affected arteries            |           |
| Cervical ICA                 | 9 (15.5)  |
| Intradural ICA               | 10 (17.2) |
| Proximal M1                  | 17 (29.3) |
| Distal M1                    | 11 (19.0) |
| M2                           | 11 (19.0) |
| Procedures                   |           |
| Single bypass                | 37(63.8)  |
| Double bypasses              | 21(36.2)  |
| Postoperative state          |           |
| Improved                     | 40 (69.0) |
| Unchanged                    | 13 (22.4) |
| Worsened                     | 5 (8.6)   |
| New infarction after surgery | 23 (40.0) |
| Surgical complication        |           |
| major                        | 4 (6.9)   |
| minor                        | 4 (6.9)   |
| Outcome at discharge         |           |
| Favorable (GR, MD)           | 43 (74.1) |
| Unfavorable (SD, VS, D)      | 15(25.9)  |
| , , , ,                      | . ,       |

TIA: transient ischemic attack, ICA: internal carotid artery, MCA: middle cerebral artery, GR: good recovery, MD: moderate disability, SD: severe disability, VS: vegetative state, D: dead

#### Table 2

Table 2. Minor and major complications after bypass surgery

| Complication          | Value |  |
|-----------------------|-------|--|
| Minor                 |       |  |
| Wound necrosis        | 2     |  |
| Wound infection       | 1     |  |
| Forehead palsy        | 1     |  |
| Major                 |       |  |
| Myocardial infarction | 2     |  |
| Perforator infarction | 1     |  |
| Remote infarction     | 1     |  |

#### Table 3

Table 3. Clinical relationship between favorable and unfavorable outcome of patients who underwent urgent EC-IC bypass.

|                             | Outcome (%)   |                |                |
|-----------------------------|---------------|----------------|----------------|
|                             | Favorable     | Unfavorable    | p Value (test) |
| No. of patients             | 43            | 15             |                |
| Mean age ± SD (years)       | $69.3\pm11.4$ | $73.7 \pm 7.0$ | .17*           |
| Sex                         |               |                | .82†           |
| Female                      | 13            | 5              |                |
| Male                        | 30            | 10             |                |
| Affected side               |               |                | .28†           |
| Right                       | 16            | 8<br>7         |                |
| Left                        | 27            | 7              |                |
| Location of steno-occlusion |               |                | .18†           |
| ICA                         | 12            | 7              |                |
| MCA                         | 31            | 8              |                |
| Collateral flow             |               |                | .003†          |
| Good                        | 21            | 5              |                |
| Moderate                    | 21            | 5<br>5         |                |
| Poor                        | 1             | 5              |                |
| Bypass                      |               |                | .21*†          |
| Single                      | 25            | 12             |                |
| Double                      | 18            | 3              |                |
| New infarction              |               |                | <.001*†        |
| Present                     | 10            | 13             |                |
| Absent                      | 33            | 2              |                |

- \* Unpaired t test.
- † Pearson's chi-square test.
- \*† Fisher's exact test