

Effects of Low-dose Unfractionated Heparin on Early Brain Injury After Subarachnoid Hemorrhage in Mice **Orhan ALTAY MD** The Zhang Neuroscience Research Laboratories, Loma Linda University, Loma Linda, CA, USA

Introduction

There is no proven effective therapy to prevent early brain injury (EBI) after subarachnoid hemorrhage (SAH) despite extensive research efforts. Sphingosine kinase (SphK) 1 has been reported as an important signaling node in antiapoptotic signaling. Heparin is a pleiotropic drug that antagonizes many pathophysiological mechanisms. In this study, we evaluated if heparin prevents EBI after SAH by antiapoptotic mechanisms including SphK1.

Methods

This study used 135 8-weekold male CD-1 mice. We induced SAH with endovascular perforation in mice and randomly assigned animals to sham-operated (n = 23), SAH + vehicle (n = 35), SAH+10U heparin pretreatment (n = 11), SAH+30U heparin pretreatment (n = 14), SAH+10U heparin posttreatment (n = 30), and SAH+30U heparin posttreatment (n = 22). At 24 hours post-SAH, neurological scores, brain water content and Evans blue extravasation were evaluated. Also, the expression of SphK, phosphorylated Akt, and cleaved caspase-3 was determined by Western blotting and neuronal cell death was examined by terminal deoxynucleoti¬dyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining.

Results

Low-dose heparin pre- and post- treatment significantly improved neurobehavioral function and brain edema at 24 hours after SAH. Moreover, low-dose heparin posttreatment attenuated blood-brain barrier disruption and neuronal cell death in the cortex, associated with an increase in SphK1 and phosphorylated Akt, and a decrease in cleaved caspase-3. High-dose heparin had a tendency for increased SAH, which aggravated brain injury and therefore obscured the neuroprotective effects.

Conclusions

Low-dose heparin posttreatment may decrease the development of post-SAH EBI through anti-apoptotic mechanisms including sphingosine-related pathway activation, implying its efficacy for early prevention of brain injury after acute aneurysm rupture in a clinical setting.

Learning Objectives

1)Early prevention of brain injury after acute aneurysm rupture is important for lifesaving in a clinical setting. 2)Low-dose heparin effect mechanism may implicate with sphingosine-related pathway activation. 3)Low-dose heparin posttreatment may decrease the development of post-SAH EBI through anti-apoptotic mechanisms including sphingosine-related pathway activation.

SAH grade (A), neurological score (B), brain water content (C) and Evans blue dye extravasation

(D) at 24 hours post-SAH. Values, median±25th to 75th percentiles (A, B) or mean±SD (C, D); *P<0.05, Kruskal-Wallis test (A, B) or ANOVA (C, D).

Representative Western blots and quantitative analysis of SphK1 (A), p-Akt (B), and cleaved caspase-3 (C) in the left cerebral hemisphere at 24 hours after SAH. The protein band density values are calculated as a ratio of that of -actin. Values are mean±SD; *P<0.05, ANOVA.

immunofluorescence images; B, quantitative analysis; values, mean±SD; *P<0.05, ANOVA