

Development of a Perfusion-Based Cadaveric Simulation Model Integrated into Neurosurgical Training Joshua Bakhsheshian MD; Gabriel Zada MD; Jonathan Russin MD; Martin H. Pham MD; Eisha Christian MD; Michael Minneti; Jesse Winer MD; Richard Aaron Robison MD; William J. Mack MD; Steven L. Giannotta MD University of Southern California.

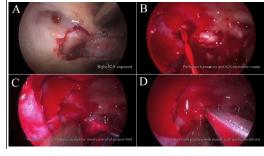
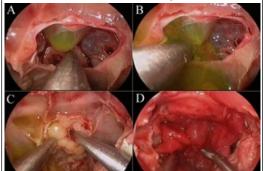
Introduction

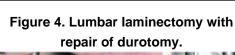
Novel methodologies providing realistic simulation of the neurosurgical operating room (OR) environment are currently needed, particularly for highly subspecialized operations with steep learning curves, high-risk profiles, and demands for advanced psychomotor skills.

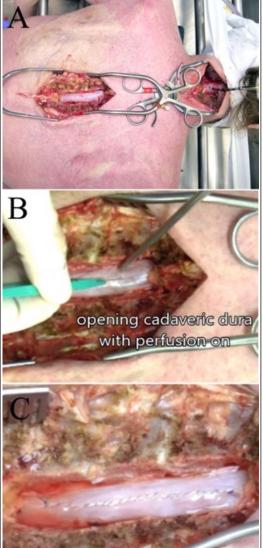
Methods

At the USC Keck School of Medicine Fresh Tissue Dissection Laboratory between 2012-2016, 43 cadaveric specimens underwent cannulation of the femoral or carotid artery and artificial perfusion of the arterial system, and/or cannulation of the intradural cervical spine for intrathecal reconstitution of the cerebrospinal fluid (CSF) system. Models were used to train neurosurgical residents in various procedures. Self-assessment of preand post-procedure trainee confidence (Likert) scores were compared for each module.

Figure: Endoscopic skull base surgery with internal carotid artery injury.


Figure: Endoscopic skull base surgery with CSF leak repair.



 A. Fluorescein-dyed saline egress to mimic a CSF leak. B. Suctioning of CSF leak C.
Repair of CSF leak by packing the sella turcica with a fat graft D. and coverage using a pedicled naso-septal flap.

Results

The following novel procedural training methodologies were successfully established: management of a carotid artery injury during endoscopic endonasal approach (n=12), endoscopic endonasal CSF leak repair (n=6) with fluorescein perfusion, carotid endarterectomy (n=4), extracranialto-intracranial bypass (n=2), insertion of ventriculostomy catheter (n=7), lumbar laminectomy with durotomy repair (n=9), and intraventricular neuro-endoscopy with septum pellucidotomy and third ventriculostomy (n=12). In all instances trainees reported improvement in their post-procedural confidence scores, with mean preand post-procedural Likert scores being 2.85 ± 1.09 and 4.14 ± 0.93 (p<0.05).

Conclusions

Augmentation of fresh cadaveric specimens via reconstitution of vascular and CSF pathways is a feasible methodology for complimenting surgical training in numerous neurosurgical procedures, and may hold implications in the future of neurosurgical resident education.

References

1.Aboud E, Aboud G, Al-Mefty O, Aboud T, Rammos S, Abolfotoh M, et al: "Live cadavers" for training in the management of intraoperative aneurysmal rupture. J Neurosurg 123:1339-1346, 2015 2.Aboud ET, Krisht AF, O'Keeffe T, Nader R, Hassan M, Stevens CM, et al: Novel simulation for training trauma surgeons. J Trauma 71:1484-1490, 2011

3. Alaraj A, Luciano CJ, Bailey DP, Elsenousi A, Roitberg BZ, Bernardo A, et al: Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery 11 Suppl 2:52-58, 2015 4. Alotaibi FE, AlZhrani GA, Mullah MA, Sabbagh AJ, Azarnoush H, Winkler-Schwartz A, et al: Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual reality simulator. Neurosurgery 11 Suppl 2:89 -98; discussion 98, 2015 5.Breimer GE, Bodani V, Looi T, Drake JM: Design and evaluation of a new synthetic brain simulator for endoscopic third ventriculostomy. J Neurosurg Pediatr 15:82-88, 2015