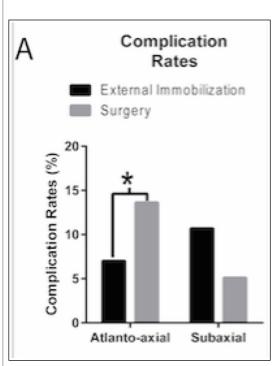


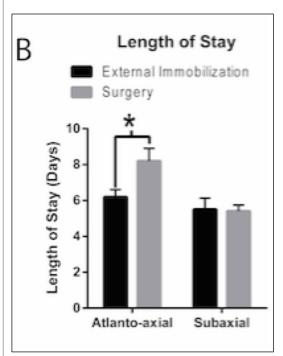
Pediatric Cervical Spine Injury Treatment: Surgical Fusion versus Halo Vest Immobilization Taylor Elise Purvis BA; Rafael De la Garza Ramos MD; Nancy A Abu-Bonsrah BS; Ali Karim Ahmed BS MD candidate; C. Rory Goodwin MD PhD; Daniel M. Sciubba MD

Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA

Introduction


- Pediatric cervical spine injuries without spinal cord injury can be treated using either surgical fusion or halo vest immobilization.
- Despite widespread use of these two treatment options, no studies within the pediatric population have compared complication rates and cost for surgical fusion vs. halo vest immobilization.
- Differences in the operative vs. nonoperative treatment outcomes of different cervical fracture locations—that is, atlantoaxial (C1-2) vs. subaxial (C3-7) fractures—have not been adequately addressed in the pediatric population.
- We used the Nationwide Inpatient Sample (NIS) to compare in-hospital complication rates following either surgical fusion or external fixation in pediatric patients with atlantoaxial and subaxial injuries.

Study Objective


- To determine whether in-hospital complications and mortality, length of stay, and total hospital charges for cervical injuries are significantly different after external fixation or spinal fusion among pediatric patients.
- Atlantoaxial Fractures: Atlantoaxial fracture patients who underwent surgery were significantly older when compared to patients treated with external immobilization (14.3 \pm 4.8 years vs. 12.5 \pm 6.0, p=0.006).
- Significant differences between treatment groups included length of stay (6.2 days for immobilization and 8.2 days for surgery, p=0.017), total charges (\$30,312 for immobilization and \$56,897 for surgery, p=0.020), and development of at least one complication (7.0% for immobilization and 13.6% for surgery, p=0.047), even after controlling for age.
- Subaxial Fractures: When comparing external immobilization to surgery for subaxial fractures, there were no significant differences in length of stay (5.5 ± 6.4 days vs. 5.4 ± 5.1, p=0.802) or complication occurrence (p=0.597). However, total charges were significantly higher in patients who underwent surgery (\$64,361 vs. \$29,332, p<0.001).

Methods

- The 2002-2011 NIS database was queried for patients under 18 with a diagnosis of atlantoaxial cervical spine fracture without cord injury.
- Patients who underwent halo immobilization or internal fixation were included for analysis. Variables analyzed included in-hospital mortality, development of at least one in-hospital complication, discharge disposition, length of stay, and total hospital charges.
- Two separate analyses were conducted: external immobilization versus surgery for atlantoaxial (C1-2) fractures and external immobilization versus surgery for subaxial (C3-7) fractures.

Complication rates (Fig. A) and length of stay (Fig. B) were significantly higher in the atlantoaxial group that underwent surgery. No differences were observed in the subaxial treatment groups.

Conclusions

Pediatric patients with atlantoaxial injury may warrant initial consideration of external fixation as treatment due to lower overall complication rates and decreased cost.

Results

A total of 659 pediatric patients with cervical spine fracture were identified; 339 (51.4%) patients with atlantoaxial (C1-2) fractures and 320 (48.6%) with subaxial (C3 -7) fractures.