

Clinical Outcomes for Stereotactic Radiosurgery for Central Neurocytoma

Timothy Trung To Bui BS; Panayiotis Emmanuel Pelargos B.A.; Seung J Lee BS; Nolan Ung BS; Lawrance K Chung BS; Natalie E Barnette; Monica Mathur BS; Nikh Bhatt; Mark Libowitz; Sabrin Sidhu; Minsu Kim MD; Isaac Yang MD Department of Neurosurgery, University of California, Los Angeles

Introduction

Central neurocytoma (CN) typically presents as an intraventricular mass causing symptomatic obstructive hydrocephalus. As such, the first line of treatment is surgical resection. Gross total resection is achieved in 60-100% of microsurgeries; recurrence occurs in 20% of patients. Because of a relatively high recurrence rate, conventional radiotherapy (cRT) was initially used as an adjuvant therapy. Stereotactic radiosurgery (SRS) was proposed as an alternative adjuvant or even primary treatment because of its lower risks.

Methods

A systematic analysis for CN treated with SRS conducted in PubMed. Reported patient raw data was aggregated and analyzed for tumor local control rate and 95% CI. Heterogeneity and publication bias were also assessed.

Results

Meta Analysis

The estimated cumulative rate of tumor control was 92.2% (95% CI=86.5%-95.7%). Mean follow-up time was 62 months (range 3-141 months). P-value under random-effect model was < 0.0001. Heterogeneity and publication bias were not significant among eligible studies.

Author and year	# Pts	Mean Age (yrs)	Modality	MTV (mL)	Mean Dose (Gy)	F/U (months)	Recurrence	LC	DC	OS	Complications
Yamanaka K, 2016	36	35.0	GKRS	4.9*	15*	54.5*	88%	94%	92%	97%	tumor hemorrhage x2 radiation injury x1
Monaco III EA, 2015	8	29.0	GKRS	5.5	14.6	63.3	88%	100%	88%	100%	-
Kim JW, 2013	20	32.0	GKRS	11.0	15.4	103	70%	85%	85%	100%	edema x1
Karlsson B, 2012	42	32.0	GKRS	12.0	13.0	73	91%	95%	95%	100%	edema x1
Genc A, 2011	22	30.2	GKRS	13.4	16.4	36	95%	95%	100%	100%	-
Yen CP, 2007	7	26.7	GKRS	6.0	16.0	60	100%	100%	100%	86%	tumor hemorrhage x1
Martin JM, 2003	4	26.3	LINAC	3.2	16.5	33	100%	100%	100%	100%	alopecia, edema, necrosis x1
Anderson RC, 2001	4	28.3	GKRS	7.0	17.0	17	100%	100%	100%	100%	-
Bertalanffy A, 2001	3	22.3	GKRS	3.9	12.8	60	100%	100%	100%	67%	death via pericarditis x1
Cobery ST, 2001	4	27.5	GKRS	14.8	10.5	44	100%	100%	100%	100%	-
Total	150		97% GKRS								
Mean		31.5	3% LINAC	9.3	14.7	62	89%	94%	94%	98%	

Conclusions

Our data suggests that SRS may be an effective and safe alternative therapy for CN. However, the rarity of CN still limits the efficacy of a quantitative analysis. A future multi-institutional randomized trial of CN patients should be considered to further elucidate this therapy.

Learning Objectives

By the conclusion of this session, participants should be able to: 1) Describe the importance of determining adjuvant therapy efficacy for central neurocytoma, 2) Discuss, in small groups, the benefits of stereotactic radiosurgery over conventional radiotherapy for treatment of central neurocytoma, 3) Identify an effective treatment for recurrent or residual central neurocytoma.

Forest Plot

Study name	Statist	ics for ea	ach study			Event rate and 95% CI				
	Event rate	Lower limit	Upper limit	Z-Value	p-Value					
Yamanaka 2016	0.944	0.803	0.986	3.894	0.000		1			-
Monaco III 2015	0.944	0.495	0.997	1.947	0.052					-
Kim 2013	0.850	0.624	0.951	2.770	0.006				-	.
Karlsson 2012	0.952	0.829	0.988	4.135	0.000					-
Genc 2011	0.955	0.739	0.994	2.975	0.003					
Yen 2007	0.938	0.461	0.996	1.854	0.064				-	
Martin 2003	0.900	0.326	0.994	1.474	0.140				-	
Anderson 2001	0.900	0.326	0.994	1.474	0.140				-	
Bertalanffy 2001	0.875	0.266	0.993	1.287	0.198				_	
Cobery 2001	0.900	0.326	0.994	1.474	0.140				_	
	0.922	0.865	0.957	7.836	0.000					•
						-1.00	-0.50	0.00	0.50	1.00
						F	avours	A F	avours	в

Local control rate of CN after SRS. Comprehensive Meta-Analysis v3.0.