

Fatty Acid Methyl Esters Provide Neuroprotection After Ischemia

Nauman Shaukat Chaudhry BS; Hung Wen Lin PhD University of Miami Miller School of Medicine Cerebral Vascular Disease Research Center

Introduction

Fatty acids can provide neuroprotection from cerebral ischemia. Palmitic methyl ester (PAME) is a 16-C fatty acid with vasodilatory properties while, stearic acid methyl ester (SAME), an 18-C fatty acid, is simultaneously released from the autonomic ganglion and currently has no known function and has not been well explored. Since many neuro and/or vasoactive modulators have intrinsic neuroprotective properties, we investigated the possible neuroprotective effects of exogenous PAME/SAME in global (6mins of asphyxial cardiac arrest, ACA) and focal (middle cerebral artery occlusion with 2 minutes (mins) of reperfusion, MCAO) cerebral ischemia models. Since PAME (a potent vasodilator) is simultaneously released with SAME, we hypothesized that PAME/SAME can confer neuroprotection in rat models of focal/global cerebral ischemia.

Methods

Adult male Sprague-Dawley rats (250-350g) were fasted overnight before surgery and subsequently intubated and anesthesized. ACA and MCAO models were used to mimic ischemic conditions. For global ischemia, ACA (6mins) was performed 30mins after PAME/SAME treatment (0.02mg/kg, IV). Histopathology of hippocampal CA1 neurons was assessed 7 days after ACA. For focal ischemia, PAME or SAME was administered following reperfusion after 2hrs of MCAO. 2,3,5-triphenyltetrazolium (TTC) staining of the brain was performed 24hrs after MCAO and the infarct volume was quantified.

Results

PAME (1143+/-39.3 normal neurons) or SAME (1188+/-57.8 normal neurons) pretreatment 30mins before ACA (6min) conferred neuroprotection in the CA1 region of the hippocampus 7 days after ACA as compared to no drug treatment (ACA only) or vehicle (0.005% ethanol). Additionally, SAME (15.97+/2.76%) and PAME (8.63+/-2.03%)-treated groups conferred reduction in percentage of brain infarct volume after MCAO as compared to controls.

Conclusions

PAME and SAME provide robust neuroprotection in both paradigms of ischemia. With proper timing and dosage, administration of PAME/SAME may one day prove to be an effective therapy against cerebral ischemia for at-risk patients.

Acknowledgements

Nauman Chaudhry was supported by a National Institutes of Health medical student neuroscience training grant. The project was supported by National Institutes of Health grants NS45676-01, NS054147-01, NS34773, NS073779, American Heart Association -Philips grant 10POST4340011, and AHA-13SDG13950014.