

Management of Simultaneous Traumatic Brain and Aortic Injury

Ryan Seiji Kitagawa MD; Shoji Yokobori; Robert Van Haren; M. Ross Bullock MD, PhD University of Miami, Miller School of Medicine University of Texas Health Sciences Center Houston, Mischer Neuroscience Institute

Introduction

Simultaneous traumatic brain injury (TBI) and aortic injury (AI) has been considered "unsurvivable" for many years because treatments such as sedation and blood pressure goals conflict for these two conditions. Additionally, surgical interventions for AI often require full anticoagulation, which is contra-indicated in TBI patients. For these reasons and due to the relative rarity of AI/TBI, little data are available to guide treating physicians.

Computed tomography of TBI and AI

Methods

A retrospective review was performed on all simultaneous TBI and AI cases from 2000 to 2012 at a level I trauma center. Patient demographics, imaging studies, interventions, and outcomes were analyzed. TBI/AI cases treated with endovascular stenting were studied to determine trends in procedure timing, use of anticoagulation, and neurological outcome.

Results

Thirty-three patients with TBI and AI were identified over a 12 year period. Median patient age was 44 years (range 16-83), and overall mortality after imaging diagnosis was 46%. All surviving patients were awake and neurologically functional at discharge. Patients who died had a higher injury severity scale (ISS) score (p=0.006). Severe TBI (p=0.045) or hemodynamic instability (p=0.015) upon arrival to the hospital were also correlated with increased mortality. Thirty-three percent of AI/TBI patients underwent endovascular stenting (n=11), and seven of these patients received intravenous anticoagulation at the time of surgery. Six of these seven anticoagulation treated patients had no significant progression on postoperative brain computed tomography, and one patient died of hemodynamic instability prior to further imaging.

		Died	Total	Percent	
Total		15	33	45.5	
Age<40		6	14	42.9	p=0.93
Age>40		8	18	44.4	
Male		9	22	40.9	p=0.46
Female		6	11	54.5	
Hemodynamic Status					
	Shock	14	24	58.3	p=0.015
	Stable	1	9	11.1	
GCS					
	Mild/Moderate	4	15	26.7	p=0.045
	Severe	11	18	61.1	
Type of Aortic inju	ary				
	Dissection	3	6	50.0	p=0.69
	Pseudoaneurysm	9	18	50.0	
	Transsection/Extravasation	3	9	33.3	
CV Surgery					
50 M	Endovascular repair	3	11	27.3	p=0.24
	Open repair	1	3	33.3	
	No open or endovascular				
	intervention	11	19	57.9	
ISS					
	26-45	5	19	26.3	p=0.015
	46-65	6	10	60.0	
	66-75	4	4	100.0	
ISS		Mean	Median		
	Alive	42	41		p=0.006
	Dead	54	50		

	Doux from Injuny				
Patient to Stent		Heparin Dose	Intracranial Lesion	Progression on CT	Outcome
1	1	3000 Units Heparin IV	SAH, SDH	None	Alive
2	0	7000 Units Heparin IV	Contusion	? Petechial hemorrhage	Alive
3	4	1000 Units Heparin IV	Contusions, IVH	None	Alive
4	1	5000 Units Heparin IV	SDH	None	Alive
5	0	None	Contusion	None	Alive
6	0	None	SAH	Dead (No CT done)	Dead
7	0	3000 Units Heparin IV	Contusions, SAH, SDH	None	Alive
8	2	None	SAH, SDH	None	Alive
9	1	10,000 Units Heparin IV	Contusion, IVH	Dead (No CT done)	Dead
10	0	4000 Units Heparin IV	Contusion, SAH	None	Alive
11	1	None	SAH	Dead (No CT done)	Dead

Conclusions

Simultaneous TBI and AI is a rare condition with a historically poor prognosis. However, our results suggest that many patients can survive with good quality of life. Technological advances such as endovascular aortic stenting may improve patient outcome, and anticoagulation is not absolutely contraindicated after TBI.

Algorhythm for treatment of TBI and AI

Learning Objectives

By the conclusion of this session, participants should be able to 1) understand the prognosis of simulatenous traumatic brain and aortic injury and 2) be aware of treatment strategies for these conditions.

References

1. Arthurs ZM, et al: Functional and survival outcomes in traumatic blunt thoracic aortic injuries: an analysis of the National Trauma Databank. J Vasc Surg 49: 988-994, 2008

2. Chestnut RM, et al: The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34: 216-222, 1993

3. Hong MS, et al: The advent of thoracic endovascular aortic repair is associated with broadened treatment eligibility and decreased overall mortality in traumatic thoracic aortic injury. J Vasc Surg 53: 36-43, 2010

4. Kurimoto Y, et al: Initial experiences in management of blunt aortic injury taking associated brain injury into consideration. Cir J 70: 198-201, 2006

5. de Mestral C, et al: Associated injuries, management, and outcomes of blunt abdominal aortic injury. J Vasc Surg 56: 656-660, 2012

6. Mosquera VX, et al: Role of conservative management in traumatic aortic injury: comparison of long-term results of conservative, surgical, and endovascular treatment. Journal of Thoracic and Cardiovascular Surgery 142: 614-621, 2011