

Minimally Effective Dose of Bone Morphogenetic Protein (BMP) in Minimally Invasive (MIS) Lumbar Interbody Fusions: 714 Patients in a Dose-Finding Statistical Modeling Cohort Study Evan Joseph Lytle DO; Doris Tong MD; Lisa Govila; Roger F Gonda MD; Clifford Michael Houseman DO; Teck-Mun Soo MD Michigan State University - College of Human Medicine

MICHIGAN STATE

College of Human Medicine

Introduction

With increasing doses of BMP, the risk of adverse events increases. We seek to demonstrate the minimally effective BMP dose to achieve a fusion in MIS TLIF.

Methods

Consecutive patients from 2009-2014, who underwent MIS lumbar interbody fusion, were reviewed. We excluded patients without radiographic (XR) follow up =3mpostop. Dose of BMP/interspace was determined. Fusion was determined by XR evaluated by independent radiologists. A pilot study was performed to determine the baseline fusion rate in our population and sample size. We used multiple logistic regression with fusion at =3m and =6m as the dependent variable and BMP dose/interspace, single vs. multilevel, postop XR interval, smoking, gender, and age as covariates. The Expß coefficient represented change in odds of fusion for oneunit change in an independent variable. Minimally effective dose of BMP was determined by running separate logistic regressions for discrete BMP dose ranges for all fusion levels and a subgroup of multi-level fusions. We considered p-value = 0.0083 as significant to compensate for multiple comparisons.

Table 1: Patient/Interspace

Dem	ographics	
Table 1: Patient	/Interspace Demograp	ohics
l Patients	714	
l Levels	1,168	
e (mg/level) Mean±SD	1.25±0.047	
at surgery (yrs) (Mean±SD)	60.7±8.9	
rval of XR (months) (Mean±SD)	12.4 (±0.59)	
	Patients	Interspace

	Patients	Interspaces
Single vs. Multi-level Fusions (n/%)		
Single level	366 (51%)	367 (31%)
Multi-level	348 (49%)	801 (69%)
Gender (n/%)		
Male	296 (42%)	498 (43%)
Female	418 (58%)	670 (57%)
Tobacco use (n/%)		
Smoker	156 (22%)	256 (22%)
Non-smoker	558 (78%)	912 (78%)

Results

Tota Tota Dose Age Inter

We identified 1,168 interspaces among 714 unique patients. Average BMP dose was 1.25mg/level (Table 1). Dose/level, and multi-level fusion were significant predictors for fusion at =6m postop with an overall fusion rates of 95% (Table 2). Odds of fusion increased by 4.7 when BMP dose was increased from range 1 (0.16-1mg/lvl) to range 2 (1.01-2mg/lvl), but did not increase when BMP dose increased from range 2 to range 3 (>2mg/lvl) (Table 3). The odds of fusion in multi-level fusions increased by 4.0 when BMP dose increased from range 1-2, but fusion odds did not increase when increased from range 2-3 (Table 4).

	Table 2: Ove	rall Fusion Rates/level		
	N	Fusion Rate (n/%)	95% CI	
Overall at ≥ 3 months postop	1,168	95.0%	93.63%	96.00%
Overall at ≥ 6 months postop	874	95.00%	93.71%	96.14%
	Predictors for Fus	ion/level ≥ 3 months Pe	ostop	
	P value	Odds Ratio	95% CI OR	
Dose of BMP/IvI	0.004	2.042	1.248	3.341
Single vs. Multilevel Fusion	0.002	2.449	1.381	4.345
	Predictors for Fus	ion/level ≥ 6 months Pe	ostop	
	P value	Odds Ratio	95% CI OR	
Dose of BMP/IvI	0.000	4.925	2.077	11.676
Single vs. Multilevel Fusion	0.001	4,141	2.004	8,556

Table 3: Fusion Rates/level per BMP

dose range/level

	N	Fusion Rate (n/%)	95% CI	
Dose (mg/level): range at ≥ 6 months postop	874			
0.16-1.0	207	91	86.00%	94.40%
1.01-2.0	487	95	92.50%	96.70%
>2.0	180	98	94.40%	99.40%
Predictors for Fusion	/level Between E	ose Ranges at ≥ 6 montl	ns Postop	
	P value	Odds Ratio	95% CI OR	
BMP Dose Range 1 vs. Range 2	0.001	4.761	1.827	12.406
BMP dose Range 2 vs. Range 3	0.021	4.258	1.241	14.611

Table 4: Multi-level Fusions: Fusion

Rates/level

	N	Fusion Rate (n/%)	95% CI	
Overall	801	96.0%	94.40%	97.17%
Dose (mg/level): Range at ≥ 3 months postop for multi-level fusions				
0.16-1.0	272	92	88.43%	94.95%
1.01-2.0	416	98	96.50%	99.26%
>2.0	113	96	94.40%	98.91%
Multi-level Fusion: Predictors	for Fusion/level	Between Dose Ranges at	≥ 3 months Po	stop
	P value	Odds Ratio	95% CI OR	
BMP Dose Range 1 vs. Range 2	0.001	3.966	1.777	8.851
BMP dose Range 2 vs. Range 3	0.332	0.544	0.159	1.86

Conclusions

We found using a BMP dose of 1.01 -2mg/level had a fusion rate of 95%. Increasing the dose above 2mg/level does not correlate with an increase in odds of fusion.

Learning Objectives

fusion rate.

By the conclusion of this session, participants should be able to: 1) Describe current recommendation with regards to BMP use in transforaminal interbody fusions. 2) Identifiy a minimally effective BMP dose/level and associated