

Comparison of Baseline and Post-Concussion ImPACT Test Scores in Young Athletes With Stimulant-Treated and Untreated ADHD

Ryan Mackenzie Gardner BA; Aaron M Yengo-Kahn BS, MD; Christopher Michael Bonfield MD; Gary Solomon PhD

Vanderbilt University School of Medicine

Sports Concussion Center

Learning Objectives

Describe the prevalence of SRC, attention deficit hyperactivity disorder, and stimulant use in the young athlete (< 21 years) population and their potential as modifiers in the assessment and management of SRC
 Identify the importance of accurate NP assessment in return to play decision-making and how specific comorbidities (i.e., ADHD) can affect the neuropsychological performance of patient populations
 Recognize the need for further investigation into the effects of ADHD on recovery from sport-related concussion

Introduction

Sport-related concussions (SRC) are a significant cause of morbidity in athletes in the US.1 Attention deficit hyperactivity disorder (ADHD) is common in the pediatric population2,3 with stimulant prescriptions in this population dramatically increasing.4 For return-to-play decision making after SRC, accurate interpretation of the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT) battery is important.1,5 ADHD and stimulants have been shown to affect baseline ImPACT scores.6-8 The purpose of this study is to assess if a self-reported diagnosis of ADHD and stimulant use was associated with post-concussion differences in ImPACT scores.

Methods

- From January 2013 February 2014, 7704 amateur athletes from across the United States, ages 13-21
 underwent baseline and post-concussion ImPACT testing. Retrospectively, following application of
 inclusion/exclusion criteria, self-reported histories were reviewed and athletes were classified based on selfreported 1) history of ADHD and 2) stimulant use (yes or no)
- Classification yielded 4 groups: 1. All Patients with ADHD, 2. Stimulant Treated ADHD, 3. Untreated ADHD, 4. Controls (no history of ADHD and no stimulant use)
- Three matching processes were undertaken in which Groups 1-3 were matched on sex, age, body mass index (BMI), education level, concussion history, and time elapsed (days) from concussion to post-concussion ImPACT test to controls
- Each group's baseline + post-concussion ImPACT scores were compared to the appropriate matched controls utilizing non-parametric statistical analysis. A fourth, final comparison of Groups 2+3 was performed.

Results

Compared to controls, a history of ADHD was associated with

- Worse ImPACT composite scores in all categories at both baseline and post-concussion
- More total symptoms at baseline; Similar total symptoms post-concussion
- Compared to controls, a history of untreated ADHD was associated with
 - Worse ImPACT composite scores in all categories at both baseline and post-concussion.
 - More total symptoms at baseline; Similar total symptoms post-concussion
- Compared to controls, a history of stimulant-treated ADHD was associated with
- Worse verbal memory and visual memory composite scores at baseline and post-concussion
- More total symptoms at baseline and post-concussion.
- Compared to those with a history of untreated ADHD, those with a history of stimulant-treated ADHD
 - Had higher visual motor composite scores but reported more total symptoms at baseline
 - No differences between the two groups were noted post-concussion

References: 1. Harmon, K.G., et al., American Medical Society for Sports Medicine position statement: concussion in sport. British journal of sports medicine, 2013. 47: p. 15-26. 2. Kessler, R.C., et al., The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry, 2006. 163(4): p. 716-23. 3. Thomas, R., et al., Prevalence of attention-deficit/hyperactivity disorder: a systematic review and metaanalysis. Pediatrics, 2015. 135(4): p. e994-1001. 4. Olfson, M., et al., National trends in the mental health care of children, adolescents, and adults by office-based physicians. JAMA psychiatry, 2014. 71: p. 81-90. 5. McCrory, P., et al., Consensus Statement on Concussion in Sport: The 4th International Conference on Concussion in Sport Held in Zurick, November 2012. British Journal of Sports Medicine, 2012. 47: p. 9. 6. Elbin, R.J., et al., Individual and combined effects of LD and ADHD on computerized neurocognitive concussion test performance: Evidence for separate norms. Archives of Clinical Neuropsychology, 2013. 28: p. 476-484. 7. Zuckerman, S.L., et al., Baseline neurocognitive scores in athletes with attention deficit-spectrum disorders and/or learning disability. J Neurosurg Pediatr, 2013. 12(2): p. 103-9. 8. Yengo-Kahn, A.M. and G. Solomon, Are psychotropic medications associated with differences in baseline neurocognitive assessment scores for young athletes? A pilot study. Phys Sportsmed, 2015. 43(3): p. 227-35.

			I	mPACT Composite	Scores: A	All Groups an	d Controls						
ImPACT Composite Score	Al	l Patients wi	th ADHD	Controls for All	ADHD	Untreated A	DHD Contr	ols for Untr	eated -	Freated ADHD	Controls for	Treated	
Baseline Verbal Memory		82.05	10.90	84.6±	9.9	82.1±1	10.67	84.4±9	.75	81.6±11.64	84.	8±10.2	
Baseline Visual Memory 71.1±13.0					2.6	70.9±1	13.04	4 76.1±12.63		71.9±12.75	75 76.2±12.22		
Baseline Visual Methory 34.7±7.38				37.1±7		34.1±				36.6±6.85	37.0±7.10		
											0.61±0.09		
Baseline Reaction Time 0.63±0.09				0.61±0		0.64±				0.62±0.09			
Baseline Total Symptom Score 5.66±8.41				3.31±6	5.23	5.07±	8.37			7.43±8.37	7 3.26±6.18		
Post-Concussion Verbal Memory 82.8±12.80				86.9±1	0.66	82.7±1	12.57	86.7±10.82		83.3±13.58	87.6±10.40		
st-Concussion Visual Memory 73.0±14.17			77.8±1	2.76	73.2±1	13.86	77.4±12.91		72.4±15.17	78.3±12.43			
Post-Concussion Visual Motor				38.5±7	07	35.6±	7.02	38.4±7.10		37.1±7.95	38.6±7.00		
Post-Concussion Reaction Time				0.60±0		0.63±		0.61±0.11		0.62±.13	0.60±.10		
Post-Concussion Total Symptom Score 7.91±14.45			:14.45	5.60±1	0.58	6.89±1	12.89	5.82±10.52		11.0±18.14 5.09±		9±10.57	
		Summary	of Compar	isons of ImPACT Co	mposite So	ores Between	Groups Pre + Po	st Concuss	ion				
				Verbal I	Memory	Visual M	emory Vis	ual Motor	Reactio	n Time Tota	l Symptom	Score	
Baseline: All Patients with ADHD vs. Matched Controls					1		1	↓ ↑		1	Ť		
Post-Concussion: All Patients with ADHD vs. Matched Controls					4		1	1		Ť		\leftrightarrow	
					1		1	1		1	Ť		
Baseline: Untreated ADHD vs. Matched Controls					1 I		Ĩ	1		+	↔		
Post-Concussion: Untreated ADHD vs. Matched Controls					+		+	+ ↔					
Baseline: Stimulant-Treated ADHD vs. Matched Controls					+		4			↔	1		
Post-Concussion Stimulant-Treated ADHD vs. Matched Controls					4		1	↔		↔	T.		
Baseline: Stimulant-Treated ADHD vs. Untreated ADHD					↔		↔	1	↑ ↔		Ť		
Post-Concussion: Stimulant-Treated ADHD vs. Untreated ADHD					↔		↔	↔		\leftrightarrow		\leftrightarrow	
				Commenter of the DA			- 6						
mPACT Composite Score	All ADHD vs. Controls	p Value* Eff	fect Size (r)**	Comparison of ImPA Untreated vs. Controls				s p Value*	Effect Size (r)**	Treated vs. Untreate	d p Value*	Effect Size ()	
Baseline Verbal Memory	Worse	0.001	-0.101	Worse	0.012	-0.088	Worse	0.047	-0.108	No Difference	0.885		
Baseline Visual Memory	Worse	0.000	-0.166	Worse	0.000	-0.176	Worse	0.013	-0.134	No Difference	0.608		
aseline Visual Motor	Worse	0.000	-0.139	Worse	0.000	-0.175	No Difference	0.496		Better	0.025	-0.134	
aseline Reaction Time	Worse	0.001	0.100	Worse	0.000	-0.125	No Difference	0.717		No Difference	0.143		
aseline Total Symptom Score	Worse	0.000	-0.156	Worse	0.000	-0.124	Worse	0.000	-0.234	Worse	0.037	+0.125	
Post-Concussion Verbal Memory	Worse	0.000	-0.143	Worse	0.000	-0.144	Worse	0.023	-0.124	No Difference	0.541		
ost-Concussion Visual Memory	Worse	0.000	-0.148	Worse	0.000	-0.133	Worse	0.003	-0.162	No Difference	0.808		
Post-Concussion Visual Motor	Worse	0.000	-0.147	Worse	0.000	-0.174	No Difference	0.285		No Difference	0.085		
Post-Concussion Reaction Time	Worse	0.000	-0.113	Worse	0.000	-0.143	No Difference	0.631		No Difference	0.071		
	No Difference	0.050		No Difference	0.689		Worse	0.001	-0.177	No Difference	0.059		

*According to Mann-Whitney U-test; Bolded values indicate significant differ *Effect Size Estimate for Mann-Whitney U Comparisons

Discussion

- Baseline Results: • Agree with previous studies
 - Stimulants may aid visual performance and reaction time
 - Further describe normative baseline data set of NP scores in patients with ADHD
 - Medication status may be important consideration
- Post-Concussion Results:
 - Novel data
 - Stimulant-treated ADHD patients report greater symptoms than controls
 - Same differences observed post-concussion as at baseline
 - Continuation of baseline deficits vs. ADHD prolonging recovery from SRC?

Conclusions

- ADHD associated with worse neurocognitive performance in all ImPACT domains at baseline and postconcussion
- Stimulants may help improve visual motor composite scores and reaction time in patients with ADHD
- These baseline and post-concussion neurocognitive test performance data can be considered when evaluating scores in athletes with ADHD, especially when interpreting post-concussion performances that appear to be abnormal and making RTP decisions in those without a baseline test
- Further assessment is needed to determine the effect of ADHD on post-concussion recovery