

Outcomes of Ruptured Intracranial Arteriovenous Malformations Treated with Gamma Knife Radiosurgery Dale Ding MD; Chun-Po Yen MD; Robert M. Starke MD MSc; Zhiyuan Xu MD; Jason P. Sheehan MD PhD FACS University of Virginia

Introduction

Ruptured intracranial arteriovenous malformations (AVM) are at a significantly greater risk for future hemorrhage than unruptured lesions thereby necessitating treatment in the majority of cases. We describe the radiosurgical outcomes for a large cohort of ruptured AVMs.

Methods

From an institutional AVM radiosurgery database, we identified all patients with a history of AVM rupture. Those with less than 2 years radiologic follow-up were excluded except those with obliteration resulting in 565 ruptured AVM patients for analysis with a median radiologic follow-up of 57 months.

The patients' median age was 29 years, and 21% underwent preradiosurgery embolization. The median volume and prescription dose were 2.1 cc and 22 Gy, respectively. The Spetzler-Martin grade was III or higher in 56% of patients, the median radiosurgery-based AVM score was 1.08, and the Virginia Radiosurgery AVM Scale (RAS) was 3 to 4 points in 44%.

Results

The cumulative obliteration rate was 76%, and the actuarial obliteration rates were 41% and 64% at 3 and 5 years, respectively.

Multivariate Cox Proportional Hazards Regression Analysis for Predictors of

Obliteration Multivariate 95% CI P value Factor Hazard Ratio No Pre-radiosurgery 1.78 1.35-2.35 <0.001* Embolization 1.02-1.09 0.001* Increased Prescription 1.05 Dose Single Draining Vein 1.24 1.00-1.52 0.046* No Post-radiosurgery 1.65 1.20-2.45 0.007* Hemorrhage 1.03-1.37 0.020* Lower Virgini 1.19 Radiosurgery AVM Scale

The annual risk of latency period hemorrhage was 2.0% with a 1.6% rate of hemorrhage-related morbidity and mortality.

Multivariate Logistic Regression Analysis for Predictors of Post-GKRS Hemorrhage				
	Multivariate			
Factor	Odds	95% CI	P value	
	Ratio			
Decreased	1.22	1.10-1.36	<0.001*	
Prescription Dose				
Multiple Draining	2.64	1.39-5.01	0.003*	
Veins				

The rates of symptomatic and permanent radiation-induced changes (RIC) were 8% and 2.7%, respectively.

Multivariate Logistic Regression Analysis for Predictors of RIC

	Multivariate		
Factor	Odds	95% CI	P value
	Ratio		
Single Draining Vein	2.53	1.64-3.92	<0.001*
Higher Virginia Radiosurgery AVM Scale	1.34	1.09-1.64	0.005*

Conclusions

Radiosurgery effectively treats ruptured AVMs with an acceptably low risk to benefit ratio. For ruptured AVMs, favorable outcomes are more likely when pre-radiosurgical embolization is avoided and a higher prescription dose can be delivered.

Learning Objectives

By the conclusion of this session, participants should be able to 1) Describe the outcomes of Gamma Knife radiosurgery as a treatment approach for ruptured intracranial arteriovenous malformations, 2) Discuss, in small groups the patient, arteriovenous malformation and treatment characteristics which predict obliteration and radiation-induced changes following radiosurgery, and 3) Identify an effective treatment for ruptured arteriovenous malformations.

References

 Ding D, Yen CP, Starke RM, Xu Z, Sheehan JP. Radiosurgery for Ruptured Intracranial Arteriovenous Malformations. J Neurosurg. 2014 Mar 21. [Epub ahead of print].
Gross BA and Du R: Natural history of cerebral arteriovenous malformations: a metaanalysis. J Neurosurg 118: 437-43, 2013.
Lawton MT, Du R, Tran MN, Achrol AS, McCulloch CE, Johnston SC, Quinnine NJ, and Young WL: Effect of presenting hemorrhage on outcome after microsurgical resection of brain arteriovenous malformations. Neurosurgery 56: 485-93; discussion 485-93, 2005.
Pollock BE, Flickinger JC, Lunsford LD,

Bissonette DJ, and Kondziolka D: Factors that predict the bleeding risk of cerebral arteriovenous malformations. Stroke 27: 1-6, 1996.

5. Stapf C, Mast H, Sciacca RR, Choi JH, Khaw AV, Connolly ES, Pile-Spellman J, and Mohr JP: Predictors of hemorrhage in patients with untreated brain arteriovenous malformation. Neurology 66: 1350-5, 2006.