

Time-delayed Contrast-enhanced MRI Improves Detection of Brain Metastases: A Prospective Study for Validation of Diagnostic Yield

Jason P. Sheehan MD, PhD, FACS; Or Cohen-Inbar MD, PhD; Zhiyua Xu; Blair Dodson; Tanvir Rizvi; Christopher Durst; Sugoto Mukherjee MD

Introduction

The radiological detection of BMs is essential for optimizing a patient's treatment. This statement is even more valid when stereotactic radiosurgery (SRS), a noninvasive image guided treatment that can target BM as small as 1-2mm, is delivered as part of that care. The timing of image acquisition after contrast administration can influence the diagnostic sensitivity of contrast enhanced MRI for BM. We investigated the effect of time delayed acquisition after administration of intravenous gadolinium on the detection of BM.

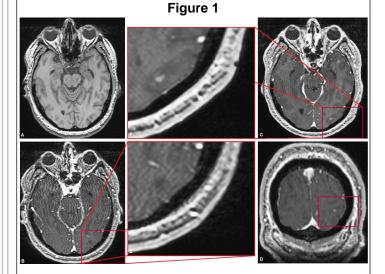
Parameter	nrameter			
			(n=no. of patients)	
Cohort size Males: Females Gender			50	
			50/50% (n=25/25)	
Age (years) at the time of MRI study (Median)			60.5 (range 39-78)	
Intracranial	Surgery (craniotomy)	22% (n=11)	
treatments	WBRT*		34% (n=17)	
prior to	SRS**		56% (n=28)	
study MRI		Number of prior sessions (Median)	1 (range 0-5)	
Primary	Lung (no	n-small-cell-carcinoma)	44% (n=22)	
Tumor	Melanoma		28% (n=14)	
Histology	Breast adenocarcinoma		18% (n=9)	
	Renal cell carcinoma		2% (n=1)	
	Ovarian adenocarcinoma		2% (n=1)	
	Seminoma		2% (n=1)	
	Esophageal squamous cell carcinoma		2% (n=1)	
	Cervical adenocarcinoma		2% (n=1)	

Radiological Findings					
Radiological Parameter		Neuro- Radiologist#1	Neuro- Radiologist#2	Neuro- Radiologist#3	Overall
Non-Contrast No. of lesions (Median)		1 (range 0-26)	1 (range 0-24)	1 (range 0-16)	1 (range 0-26)
Contrast Time 0 Positive lesions (Median)		3 (range 0-72)	3 (range 0-65)	3 (range 0-38)	3 (range 0-72)
Contrast Time 10 Positive lesions (Median)		3 (range 1-76)	3 (range 1-67)	3 (range 1-38)	3 (range 1-76)
Contrast Time 20 Positive lesions (Median)		3 (range 1-76)	3 (range 1-67)	3 (range 1-38)	3 (range 1-76)
LMD*	Time-0	14% (n=7)	0	24% (n=12)	19%
	Time 10 min.	16% (n=8)	0	26% (n=13)	21%
	Time 20 min.	16% (n=8)	0	26% (n=13)	21%

Methods

This is a prospective IRB approved study of 50 patients with BM who underwent post-contrast MRI sequences immediately after injection of gadolinium (0.1 mmol/kg Gadavist®) as part of clinical care (defined as t0), followed by axial T1 sequences after a 10 minutes (t1) and 20 minute delay interval (t2). MRI studies were blindly compared by 3 neuroradiologists.

Table 3						
Delayed MRI sequences Analysis						
Parameter			Value (95% CI)	Р		
Intraclass Co	rrelation Coefficient	T0	0.914 (0.864-0.948)	< 0.00005		
(Single measures)		T1 (10 min.)	0.904 (0.848-0.943)	< 0.00005		
		T2 (20 min.)	0.905 (0.849-0.943)	< 0.00005		
Two tailed	Neuro-Radiologist	T0 vs. T1		0.039		
significance*	#1	T0 vs. T2		0.016		
	Neuro-Radiologist	T0 vs. T1		0.096		
	#2	T0 vs. T2		0.035		
	Neuro-Radiologist	T0 vs. T1		0.18		
	#3	T0 vs. T2		0.034		
*Refer to the s	tatistical analysis metho	ods of the manusc	ript for further details			


Results

Single measure intraclass correlation coefficients were very high (0.914, 0.904 and 0.905 for t0, t1 and t2 respectively), corresponding to a reliable inter-observer correlation. The t2 delayed sequences showed a significant and consistently higher diagnostic sensitivity for BM by every participating neuroradiologist as well as for the entire cohort (p=0.016, p=0.035 and 0.034 respectively). A disproportionately high representation of BM detected on the delayed studies was located within posterior circulation territories (compared to predictions based on tissue volume and blood-flow volumes).

Conclusions

Considering the safe and potentially high yield nature of the delayed MRI sequences, it should supplement the basic MRI sequences in all patients in need of precise delineation of their intracranial disease.

Patient and Tumor Features Correlation to Diagnostic Yield							
Par	ameter	Р	Hazard Ratio	95% Confidence Interva			
Pat	ient Age (at time of MRI)	0.248	0.961	0.899-1.028			
Prie	or WBRT*	0.531	1.587	0.374-6.737			
logy	NSCLC vs. Other primary malignancies	0.911	0.923	0.225-3.780			
Primary Histology	Breast Adenocarcinoma vs. Other primary malignancies	0.136	3.875	0.654-22.957			
	Metastatic Melanoma vs. Other primary malignancies	0.297	0.407	0.075-2.199			

Sample patient. 58 years old with NSCLC. A, Axial nonenhanced T1WIMPRAGE, with no apparent lesions or edema. B+E, Axial gadolinium enhanced T1WI MPRAGE sequence at time-t0 (0-5 minutes after contrast administration), showing no apparent left occipital lesion (magnified in E) C+D+F, Axial (C+F) and coronal (D) Gadolinium enhanced T1WI MPRAGE sequence at 20 minutes delayed acquisition (time t-2) after contrast administration showing a definitive 4mm left occipital lesion.