

# Predictors of Vertebral and Carotid Artery Dissection during Blunt Trauma: Experience in a Level I Trauma

Center

Sayantan Deb BA; Allen Ho MD; Lily kim BA; Anshul Haldipur MD; Stephanie Lin; Mahesh Patel MD; Harminder Singh MD,

FACS

Stanford University School of Medicine

### Introduction

Various studies have sought to identify factors associated with vertebral and carotid artery dissection in a trauma setting [1,2]. However, these models are controversial, and efforts continue to optimize these predictors.

## Methods

950 patients, who underwent CTangiography in Santa Clara Valley Medical Center Emergency Department between 2009-2014, were included in this study. 515 patients were excluded because they were non-trauma cases, or had penetrating injuries.

435 patients were analyzed, who all underwent neck CTA for blunt traumatic injuries. Mechanism of injury was classified as high- and lowimpact, based on county guidelines for major and minor trauma. A positive neurological sign included altered mental status (GCS<15 or less than baseline) or focal neurological deficits. Fractures and dissections were radiologically confirmed. Multivariable logistic regression was used to analyze data with SAS v9.4.

| Table 1. Population De      | mographics     |
|-----------------------------|----------------|
| N                           | 435            |
| Mean Age +/- SEM            | 39.70 +/- 0.95 |
| % Female                    | 35.86          |
| % High Impact Injury        | 54.25          |
| % Low Impact Injury         | 45.75          |
| % Vertebral Column Fracture | 28.51          |
| % Displaced Fracture        | 50.81          |
| % Carotid Artery Injury     | 2.07           |
| % Vertebral Artery Injury   | 3.68           |
| % Neurological Injury       | 41.38          |
| % Stroke                    | 1.15           |

Table 2. Patient Differences by CarotidArtery Dissection

|                       | Vertebral Injury | No Vertebral Injury | P-Value |
|-----------------------|------------------|---------------------|---------|
| N                     | 16               | 419                 |         |
| Mean Age +/- SEM      | 40.56 +/- 3.91   | 39.66 +/- 0.97      | 0.86    |
| % Female              | 43.75            | 35.56               | 0.5     |
| % High Impact Injury  | 56.25            | 54.18               | 0.87    |
| % Vertebral Fracture  | 75               | 26.73               | <0.0001 |
| % Displaced           | 58.33            | 50                  | 0.58    |
| % Neurological Injury | 81.25            | 39.86               | 0.001   |
| % Stroke              | 0                | 1.2                 | 0.66    |

Table 3. Patient Differences ByVertebral Artery Dissection

|                       | Vertebral Injury | No Vertebral Injury | P-Value |
|-----------------------|------------------|---------------------|---------|
| N                     | 16               | 419                 |         |
| Mean Age +/- SEM      | 40.56 +/- 3.91   | 39.66 +/- 0.97      | 0.86    |
| % Female              | 43.75            | 35.56               | 0.5     |
| % High Impact Injury  | 56.25            | 54.18               | 0.87    |
| % Vertebral Fracture  | 75               | 26.73               | <0.0001 |
| % Displaced           | 58.33            | 50                  | 0.58    |
| % Neurological Injury | 81.25            | 39.86               | 0.001   |
| % Stroke              | 0                | 1.2                 | 0.66    |

# Results

Of 435 patients, 35.86% were female and 54.25% experienced high-impact injuries. 28.51% had vertebral fractures, of which 50.81% were displaced. 41.38% patients had a positive neurologic sign on presentation. 9 (2%) patients were diagnosed with carotid artery dissections, and 16 (3.7%) had vertebral artery dissections [Table 1.]. There were no significant associations between positive neurologic sign, age, sex, mechanism of injury, or vertebral fracture for carotid artery injury (all p>0.05). There was a significant difference in the rates of stroke between patients with carotid artery dissection and those without injury (p<0.05) [Table 2.].

Positive neurologic signs and vertebral fractures were significant predictors of vertebral artery dissection (OR=5.46, p < 0.01; OR=8.44, p < 0.001respectively). Age, sex, mechanism of injury, or displacement of vertebral fracture were not significant predictors of vertebral artery injury (all p > 0.05). There were significant differences in rates of vertebral fractures and positive neurologic sign between those with vertebral artery dissection and those without injury (all p < 0.05) [Table 3.].

## Conclusions

These findings from a large cohort of patients with blunt traumatic injury at a single trauma center show that positive neurologic signs and presence of vertebral fractures (displaced or non -displaced) are significant predictors of vertebral artery injuries. This underscores potential avenues to optimize screening tools for such injuries.

## Learning Objectives

 Neurologic deficits is a significant predictor of vertebral artery dissection in a trauma setting.
 Mechanism of injury (high or low impact) is not an independent predictor of arterial dissection.
 Vertebral fractures (displaced and non-displaced) are a significant predictor of vertebral artery dissection, while vertebral body

dislocation/displacement by itself is not.

### References

1) Lockwood MM, Smith GA, Tanenbaum J, Lubelski D, Seicean A, Pace J, Benzel EC, Mroz TE, Steinmetz MP. Screening via CT angiogram after traumatic cervical spine fractures: narrowing imaging to improve cost effectiveness. Experience of a Level I trauma center. J Neurosurg Spine. 2016 Mar;24(3):490-5. doi: 10.3171/2015.6.SPINE15140. PubMed PMID: 26613284.

2) Delgado Almandoz JE, Schaefer PW, Kelly HR, Lev MH, Gonzalez RG, Romero JM. Multidetector CT angiography in the evaluation of acute blunt head and neck trauma: a proposed acute craniocervical trauma scoring system. Radiology.
2010 Jan;254(1):236-44. doi: 10.1148/radiol.09090693. PubMed PMID: 20019135.