

Upright MRI Lumbar Spine: A Comparison Among Foraminal, Disc, and Lumbar Alignment Parameters **Between Symptomatic and Asymptomatic Patients**

Brian D. Stemper PhD; Ha Nguyen MD; Jamie Baisden MD Medical College of Wisconsin

178.83

81.27

Introduction

Lumbar back pain and lumbar radiculopathy are common medical diagnoses that cause extensive economic burden. Unfortunately, conventional supine MRI findings and clinical symptoms do not necessarily correlate in the lumbar spine. While supine, the lumbar lordosis is physiologically reduced with relief or reduction in pain. Moreover, nerve root compression may not be visible with MRI performed in a supine position. With upright imaging, disc pathologies or foraminal stenosis may become more salient, leading to potential nerve root compression that is not visible on supine images.

Methods

Seventeen adults (10 asymptomatic patients and 7 symptomatic patients) were selected. A 0.6 T upright MRI scanned each patient in the upright position. Parameters were obtained from the L2/3 level to L5/S1 level, including those pertaining to the foramen (cross sectional area, height, mid-disc width, width, thickness of ligamentum flavum), the disc (bulge, height), and lumbar alignment (lordosis angle, wedge angle, lumbosacral angle, lumbar spine length). Findings were compared via pair t tests between symptomatic patients and asymptomatic patients.

Table 1:	Table 1: Patient demographics			
	Asymptomatic	Symptomatic		
Total	10	7		
Males	5	5		
Females	5	2		
Age (years)	25.22	35.14		

Height (cm)

Weight (kg)

Table 2. Foraminal naram

170.06

89.77

		Asymptomatic	stday	Symptomatic	stday	p value
	L2/L3	Asymptomatic 4.828		5,469		0.459
Foramen mid						
	L3/L4	4.409		4.616		
	L4/L5	4.383				
	L5/S1	5.843	2.140	4.857	2.072	0.190
	L2/L3	7.678	1.019	8.628	1.782	0.057
Foramen disc	L3/L4	8.614	1.230	9.432	2.224	0.179
width	L4/L5	8.288	1.528	9.241	1.855	0.111
	L5/S1	7.438	1.513	8.781	2.782	0.079
	L2/L3	18.809	1.883	19.936	4.706	0.339
Foramen	L3/L4	18.160	1.694	19.785	2.405	0.027*
neight	L4/L5	16.493	1.546	15.513	5.051	0.419
	L5/S1	14.699	4.866	15.783	5.758	0.557
	L2/L3	106.809	22.722	112.685	53.902	0.975
	L3/L4	117.508	32.631	99.897	25.862	0.231
Foramen CSA	L4/L5	98.887	26.040	80.598	24.988	0.064
	L5/S1	104.463	23.801	82.708	30.129	0.036
TLF	L2/L3	1.520	0.677	2.182	0.894	0.019
	L3/L4	1.495	0.563	2.056	0.660	0.014
	L4/L5	1.854	0.827	2.536	0.999	0.041*
	L5/S1	1.676	0.813	2.513	0.683	0.004*

Table 3: Disc parameters

			-			
		Asymptomatic	stdev	Symptomatic	stdev	p value
	L2/L3	1.141	0.516	1.289	0.657	0.467
Disc bulge	L3/L4	1.036	0.359	1.264	0.762	0.250
	L4/L5	1.180	0.530	1.770	0.522	0.003*
	L5/S1	0.879	0.321	1.819	0.754	0.000*
	L2/L3	6.795	1.270	7.159	1.520	0.459
Disc height	L3/L4	7.814	1.587	8.223	1.715	0.485
	L4/L5	7.590	1.171	7.805	2.330	0.729
	L5/S1	6.229	1.167	6.720	1.409	0.282

Table 4: Alignment parameters

	abr		giinici	n pare	amete	3
		Asymptomatic	stdev	Symptomatic	stdev	p value
	L2/L3	2.797	1.631	3.019	2.668	0.834
	L3/L4	5.683	2.968	5.437	3.165	0.872
	L4/L5	7.137	2.322	4.860	2.502	0.073
	L5/S1	7.898	6.554	6.713	3.774	0.674
umbar ordosis		50.161	10.530	40.861	13.239	0.127
umbosacral ngle		38.531	10.687	30.076	7.747	0.095
umbar spine		172.760	10.580	177.836	11.194	0.357

Results

Among foramen parameters, the foramen height was statistically larger at the L3/4 disc space for the symptomatic group; the thickness of the ligamentum flavum was statistically larger along all disc space levels in the symptomatic group. The foramen cross sectional area was statistically smaller at the L5/S1 level in the symptomatic group. Among disc parameters, the disc bulge was significantly larger at L4/5 and L5/S1 in the symptomatic group. There were no significant findings among the lumbar alignment parameters.

Conclusions

This supports the significance of ligamentum flavum hypertrophy as a component of these symptoms. Moreover, symptomatic patients have larger disc bulge and smaller foramen cross sectional area at the lower lumbar levels. Given these findings, upright MRI may be useful to evaluate and treat symptomatic patients.

Learning Objectives

1) Understand the background on upright MRI

2) Understand the potential usefulness of upright MRI for diagnosing lumbar pathologies based on differences in various parameters seen between symptomatic patients and asymptomatic patients.

References 1.Froud, R., et al., A systematic review and meta -synthesis of the impact of low back pain on people's lives. BMC Musculoskelet Disord, 2014. 15: p. 50. 2.Hahne, A.J., J.J. Ford, and J.M. McMeeken, Conservative management of lumbar disc herniation with associated radiculopathy: a systematic review. Spine (Phila Pa 1976), 2010. 35(11): p. E488-504. 3.Hoy, D., et al., The Epidemiology of low back pain. Best Practice & Research Clinical Rheumatology, 2010. 24(6): p. 769-781. 4.Splendiani, A., et al., Occult neural foraminal stenosis caused by association between disc degeneration and facet joint osteoarthritis: demonstration with dedicated upright MRI system. Radiol Med, 2014. 119(3): p. 164-74. 5.Balague, F., et al., Non-specific low back pain. Lancet, 2012. 379(9814): p. 482-91. 6.Tarulli, A.W. and E.M. Raynor, Lumbosacral radiculopathy. Neurol Clin, 2007. 25(2): p. 387-405. 7.Hedberg, K., et al., Low back pain: an

assessment using positional MRI and MDT. Man Ther, 2013. 18(2): p. 169-71. 8.Weishaupt, D., et al., Positional MR imaging of

the lumbar spine: does it demonstrate nerve root compromise not visible at conventional MR imaging? Radiology, 2000. 215(1): p. 247-53. 9.Gilbert, J.W., et al., Lumbar stenosis rates in symptomatic patients using weight-bearing and recumbent magnetic resonance imaging. J Manipulative Physiol Ther, 2011. 34(8): p. 557-61.

10.Iwata, T., et al., In vivo measurement of lumbar foramen during axial loading using a compression device and computed tomography. J Spinal Disord Tech, 2013. 26(5): p. E177-82. 11.Schmid, M.R., et al., Changes in crosssectional measurements of the spinal canal and intervertebral foramina as a function of body position: in vivo studies on an open-configuration MR system. AJR Am J Roentgenol, 1999. 172(4): p. 1095-102.

12.Zamani, A.A., et al., Functional MRI of the lumbar spine in erect position in a superconducting open-configuration MR system: preliminary results. J Magn Reson Imaging, 1998. 8(6): p. 1329-33.

"For additional references, please contact hsnguyen@mcw.edu