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Introduction

Perturbations in synchronized oscillatory activity in brain
networks are increasingly recognized as important
features in movement disorders. In Parkinson’s Disease
(PD), dopamine replacement and DBS therapy reduce the
resting state amplitude of beta band (13-30 Hz)
oscillatory activity in the subthalamic nucleus (STN), and
these reductions correlate with improvements in
bradykinesia and rigidity (Brown et al., 2001).
The globus pallidus is a commonly used target for deep

brain stimulation (DBS) in Parkinson’s disease (PD).

Consistent with the evolving theory of excessive beta
oscillatory activity in PD, several studies have shown
higher resting state beta band oscillatory activity in the
GP of PD compared to non-parkinsonian conditions

(Silberstein et al. 2003, Weinberger et al., 2012).

However, the effects of pallidal DBS on basal ganglia and
cortical oscillations are unknown.

Objectives

1) Evaluate pallidal and cortical oscillatory activity in
akinetic-rigid PD and in a nonparkinsonian disorder,
isolated dystonia.

2) Find disease-specific pallidal and pallido-cortical
oscillatory activities

3) Examine the effect of therapeutic pallidal stimulation
on these oscillatory activities

Methods

Resting state pallidal local field potentials (LFP) were
recorded intraoperatively from DBS electrodes in 20
akinetic-rigid PD and 14 primary isolated dystonia
patients in the awake state.

Subdural ECoG strip was temporarily placed in the
primary motor cortex (M1). Localization is confirmed
anatomically and using reversal of the N20 wave from the
somatosensory evoked potential (SSEP).

Results

Figure 1: Pallidal LFP
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Left: 1s sample resting state pallidal LFP signals recorded from a PD patient (top) and a dystonia patient {bottom) and their respective log power spectra.
Right: 1s resting state M1 ECoG potential recorded and log power spectral from a PD patient {top) and a dystonia patient (bottom).

Figure 2:
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Left: Averages of normalized resting pallidal spectral power for 20 PD (blue line) and 14 dystonia (red line) with their respective SEM (shaded). Asterisks indicate frequency
bands showing significant difference between the two groups in theta and low beta bands (* p<0.05; posthoc FDR-adjusted Wilcoxon rank sum test). Right: Averages of
1 i ith i
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task (* p<0.05, **p<0.01; post-hoc FDR-adjusted Wilcoxon rank sum test).

Left: Examples of movement-modulated pallidal log spectral power change for a P
epoch power s indicated by solid lines and average “movement” epoch power is indicated by dashed line. Right: Grouped analysis for averages + SEM of
movement-modulated power changes in the pallidal LFP for 7 PD patients (blue line) and 10 dystonia patients (red line) who underwent an arm movement

D patient (blue lines) and a dystonia patient {red (ines). Average “hold”
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Left: Averages of Mi-pallidal coherence for 11 PD (blue line) and 12 dystonia (red line) patients demonstrating greater low beta frequency coherence in PD
compared to dystonia (* p<0.05; post-hoc FDR-adjusted Wilcoxon rank sum test). Middle: Box plots of M1-pallidal amplitude coherence for PD and dystonia
patients showing o difference across theta or beta frequency bands. Right: Box plots of Mi-pallidal phase coherence for PD and dystonia patients showing
greater phase synchrony in theta frequency in dystonia and low beta frequency in PD (* p<0.05; post-hoc FDR-adjusted Wilcoxon rank sum test).
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A) Pallidal LFP pre, during, and post pallidal DBS stimulation. B) Time-frequency spectrogram showing power changes different stimulation
«conditiens. UPDRS boxes indicated periods of clinical testing. €) Log power specwra of pallidal LFPs recorded during different cenditions.
T=tremer; B=bradykinesia; Rerigidity. D) Comparison of four FD patients during DBS OFF#ON recordings showed decreased total beta power in
the DBS ON and compared to pre-DBS and post-DBS states (*p<0.05; repeated measure ANOVA). E) GPi DBS had no effect on M1 beta power.

Data were processed and analyzed offline in MATLAB. Data were
down sampled to 1 KHz.

Recordings were performed in two conditions. 1) During rest and
2) During the movement task, patients performed flexion-
extension of the elbow or an iPad tapping task.

Power spectral density (PSD) and Coherence were calculated
using Welch's periodogram method.
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Left: Averages of M1-pallfdal coherence for four PD patfents pre- {blue}, during- {red), and post- (green} DBS demonstrating reduction of beta

coherence durfng GPf DBS. Box plots of averaged beta phase (middle} and amplitude {right) coherence pre-, during-, and post-DBS ("p<0.05;

repeated measure ANGVA).
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Conclusions

e PD patients had elevated resting pallidal low
beta band power compared to dystonia patients,
whereas dystonia patients had elevated resting
pallidal theta band power compared to PD.

e PD patients demonstrated relatively elevated
phase coherence with the motor cortex in the
beta band

e Dystonia patients had greater theta band phase
coherence.

e Pallidal beta power and pallido-M1 beta
coherence was reversible reduced by pallidal
DBS in PD

Our results support the hypothesis that specific
motor phenomenology observed in movement
disorders are associated with elevated network
oscillations in specific frequency bands, and that DBS
in movement disorders acts in general by disrupting
elevated synchronization between basal ganglia
output and motor cortex.
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