
Association of Anterior Communicating Artery Aneurysm with Triplicate A2 Segment of the Anterior Cerebral Artery

Ali Jalali MD PhD; Peter Kan MD, MPH, FRCSC; Edward A.M. Duckworth MD, MS, BA, BS Baylor College of Medicine, Houston, TX

Introduction

Triplicate A2 segment of the anterior cerebral artery (ACA) is a rare anatomical variant (Figure 1) with a reported prevalanece in large series of approximately 1-3%. The third A2 segment is thought to result mainly from persistence of the embryonic median artery of the corpus callosum (Figure 2). A recent report noted a higher prevalence of the triple-A2 variant among patients with aneurysmal subarachnoid hemorrhage. We sought to determine if the triple-A2 variant is specifically associated with anterior communicating artery (AComA) aneurysms.

Triplicate A2 segment in association with an anterior communicating artery aneurysm

Persistent median artery of the corpus callosum

Persistent median artery of the corpus callosum giving rise to an additional A2 segment

Methods

we performed a PubMed literature search for large-scale imaging studies of the Circle of Willis or anterior circulation variants. Large-scale was defined as greater than 100 subjects. Where pathologies were stated, those subjects were excluded from the total count.

We reviewed two-dimensional digital-subtraction angiography (2D-DSA) and three-dimensional rotational angiography (3D-RA) images of 55 patients with AComA aneurysms treated between 2009 and 2014 at our institution. The criteria to obtain definitive accounting of all A2 segments were presence of adequate cross-filling across the AComA or ability to fuse 3D-RA images of left and right internal carotid artery injections. Patients whose imaging did not meet the above criteria were excluded from further analysis.

Results

Our literature search yielded 4 large scale imaging studies that quantified the number of individuals bearing the triple-A2 variant (Table 1). Combining these numbers (44/2440) yields a more accurate estimate of the prevalence of the triple-A2 variant in the normal population (1.80%).

Table 1					
Study first author	Study year	Imaging modality	Individuals studied	Triple-A2 variants	
Krzyżewski et. al.	2015	CTA	411	4 (1.0%)	
Popovic et. al.	2011	MRA	1000	13 (1.3%)	
Uchino et. al.	2006	MRA	879*	25* (2.8%)	
Krabbe-Hartkamp et. al.	1998	MRA	150	2 (1.3%)	

* After excluding individuals with pathologic findings. Original numbers reported are 891 and 27.

Large-scale imaging studies that quantify the prevalence of the triple-A2 variant

Among our AComA aneurysm patients, we were able to obtain a definitive count of all A2 segments in 36 patients. A total of 7 patients had the triple-A2 variant. The prevalence of the triple-A2 variant in our cohort of AComA aneurysm patients is 19.4% (Table 2).

Table 2				
AComA aneurysm treatment	Number of patients	Number with triple-A2 variant		
Open surgery	16	5		
Endovascular	20	2		
Total	36	7 (19.4%)		

Prevalance of the triple-A2 variant among our AComA aneurysm patients

Conclusions

Compared to normal population, patients with AComA aneurysm have a significantly higher likelihood of having triplicate A2 segment of the ACA (binomial P<0.0001). Knowledge of this variation is of critical importance in planning and executing endovascular and open surgical treatment of AComA aneurysms.

References

Ferré J-C, et al. Anatomical variations of the anterior cerebral arterial circle visualized by multidetector computed tomography angiography: Comparison with 3D rotational angiography. J Neuroradiol 2013;40:112–20. Krzyzewski RM, et al. Anatomical variations of the anterior communicating artery complex: gender relationship. Surg Radiol Anat 2015;37:81–6.

Popovic S, et al. Anatomic Variations Of The Anterior Portion Of The Circle Of Willis: An MR Angiography Study. Curr Top Neurol Psychiatry Relat Discip 2011;19:8–13.

Uchino A, et al. Anterior cerebral artery variations detected by MR angiography.

Neuroradiology 2006;48:647–52.

Krabbe-Hartkamp MJ, et al. Circle of Willis: morphologic variation on three-dimensional time-of-flight MR angiograms. Radiology 1998;207:103–11.

Learning Objectives

1) Describe the triple-A2 variant, its main developmental origin, and its prevalence in the normal population, 2) Understand the association of the triple -A2 variant with anterior communicating artery aneurysms, and 3) Discuss the importance of knowledge of this variant for treatment of anterior communicating artery aneurysms.