

Outcome Predictors of Brainstem Cavernous Malformations

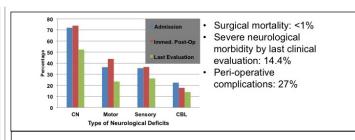
Roxanna Garcia; Michael Ivan; Michael T. Lawton MD UC San Francisco, Department of Neurosurgery UC Berkeley, Department of Epidemiology

INTRODUCTION: Approximately 8-22% of intracranial cavernomas occur within the brainstem. Surgical resection of brainstem cavernous malformations (BSCMs) is considered the standard of care following hemorrhagic events but predictors of post-surgical outcomes remain poorly described.

RESEARCH HYPOTHESIS: Pre-operative outcome predictors for BSCMs are similar to those used in arteriovenous malformations (AVMs), including Spetzler Martin Grading Scale, Lawton Supplementary Grading Scale

METHODS

- A retrospective chart review was conducted on n=104 consecutative patients from 1997-2012
- Binary logistic regression was performed; the outcome variable was dichotomized modified Rankin Scale (mRS) score <2 or >2 at last clinical evaluation
- Multivariable logistic regression models were constructed based on the a prior hypothesis and univariable logistic regression
- Statistical models were cross validated using 10-fold crossvalidation and area under ROC curves


RESULTS

PATIENT DEMOGRAPHICS & BSCM CHARACTERISTICS:

- Mean age (range) = 42.1 years (7-81)
- Gender = 58 females; 46 males
- Maximum lesion diameter, mean in mm (+SE) = 19.3+7.54
- Days since last hemorrhage, mean (range) = 59.2 (1-426)
- One hemorrhagic event = 49 (47.1%)
- DVA present = 48 (46.2%)
- Follow-up time in months, mean (range) = 18.6 (0 144)

PATIENT OUTCOMES

- ACCORDING TO mRS SCORES
 - mRS score < 2 by last evaluation = 79.8%
 - Relative improvement or same mRS score = 89.5%

Table 1: Univariable Logistic Analysis of Preoperative Predictors for Unfavorable Outcomes (mRS >2)

PREOPERATIVE PREDICTOR	OR (95% CI)	p-value	
Patient Demographics & Clinical Presentation Predictors			
Age, per year	1.06 (1.02-1.09)	0.002	
Female gender	1.37 (0.51-3.66)	0.527	
Admission motor deficit present	2.92 (1.10-7.80)	0.032	
Admission CN deficit present	2.74 (0.74-10.11)	0.131	
DVA present 3.44 (1.15-1		0.027	
BSCM Location & Size Predictors			
Lesion located ventrally	1.75 (0.69-4.60)	0.254	
Pontine location	0.84 (0.32-2.21)	0.719	
Midbrain location	1.30 (0.42-4.10)	0.645	
Medullary location	0.99 (0.29-3.33)	0.981	
Lesion crossing axial midpoint	2.37 (0.87-6.47)	0.093	
Maximal axial diameter, per mm	1.04 (0.98-1.10)	0.233	
Hemorrhagic Events & Timing Predictors			
Acute hemorrhage time (<3 wks)	0.52 (0.18-1.48)	0.222	
Sub-acute hemorrhage time (≥3-8 wks)	0.69 (0.21-2.29)	0.551	
Chronic hemorrhage time (≥8 wks)	2.41 (0.91-6.38)	0.076	
Total hemorrhagic events, per event	1.29 (0.85-1.94)	0.231	

Table 2: Multivariable Logistic Regression Models

	FULL MODEL		NESTED MODEL #1	
PREDICTOR	OR (95% CI)	p-value	OR (95% CI)	p-value
Age, per 5 years	1.07 (1.02 – 1.12)	0.001	1.07 (1.03 – 1.11)	0.001
Maximum axial size, per 1 mm	1.09 (0.99 – 1.19)	0.078	1.09 (0.99 – 1.18)	0.080
DVA present	4.15 (1.06 - 16.21)	0.041	4.01 (1.04 - 15.40)	0.043
Acute Hemorrhage Time	0.18 (0.04 - 0.82)	0.027	0.18 (0.04 – 0.82)	0.027
Sub-acute Hemorrhage Time	0.23 (0.05 – 1.45)	0.100	0.24 (0.05 – 1.38)	0.100
Ventral lesion	0.77 (0.22 - 2.73)	0.681	-	-
Lesion crossing axial midpoint	3.60 (0.95 – 13.46)	0.060	3.40 (0.93 – 12.42)	0.075
Follow-up time last surgery, per month	1.02 (1.00 – 1.04)	0.027	1.02 (1.00 – 1.04)	0.030
Area under ROC curve (95% CI)	0.86 (0.79 – 0.94)		0.87 (0.80 - 0.94)	
10-Fold CV Misclassification rate (95% CI)	17.1% (17.0 – 17.2)			
* The baseline reference g * Age centered at median		ing with post	-hemorrhage time of ≥8 weel	ks

Proposed BSCM Grading System "GIL" Score [Garcia-Ivan-Lawton]

BSCM Proposed Gradi	ng Scale	Point Value	Su
Maximum Axial Size	< 2.5 cm	0	Ma
	> 2.5 cm	1	
DVA Present	No	0	De
	Yes	1	
-	-	-	Ele
Age	< 40	0	Ac
	>40	1	
Time since	0-3 weeks	0	Ur
hemorrhage	>3 weeks	1	pr
Lesion crosses axial	No	0	Di
brainstem midpoint	Yes	1	
Total Points Possible		5	То

AVM Spetzler Martin + Lawton Supplementary Grading Scale		Point Value
Maximum Size	<3cm, 3- 6cm, >6cm	1-3
Deep Drainage	No Yes	0
Eloquent location	No Yes	0
Age	0-20, 20- 40, >40	1-3
Unruptured presentation	No Yes	0
Diffuseness	No Yes	0
Total Points		10

Patient Outcomes Classified by "GIL" Score

	Favorable Outcome (mRS Scores 0-2)		Unfavorable Outcome (mRS Scores 3-6)	
Grade	Frequency of Patients	% Patients with assigned grade	Frequency of Patients	% Patients with assigned grade
0	2	100%	0	0%
- 1	23	100%	0	0%
Ш	31	81.6%	7	18.4%
III	21	80.8%	5	19.2%
IV	6	42.9%	8	57.1%
٧	0	0%	1	100%
Total	83	59 (79.8%)	21	41(20.2%)

CONCLUSIONS/LIMITATIONS

- •Surgical treatment of BSCM can result in serious morbidity but overall outcomes are favorable
- •Brainstem cavernous malformations likely have similar predictive factors compared to arteriovenous malformations
- •Although the small sample size limits our statistical power and inference, we were able to identify new predictive factors that can aid in assessing patient outcomes following surgical resection of brainstem cavernous malformations

REFERENCES

- 1.Rigamonti, D. et al. Cerebral cavernous malformations. Incidence and familial occurrence. N. Engl. J. Med. 319, 343–347 (1988).
- 2.Gross, B.A. et al. Brainstem cavernous malformations. Neurosurgery 64, E805–818 (2009).
- 3.Van Swieten, J.C. et al. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19, 604–607 (1988).
- 4.Spetzler, R. F. & Martin, N. A. A proposed grading system for arteriovenous malformations. J. Neurosurg. 65, 476–483 (1986).
- 5.Lawton, MT et al. A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery 66, 702–713 (2010).
- 6.Sun, G.W, et al. Inappropriate use of bivariable analysis to screen risk factors for use in multivariable analysis. J Clin Epidemiol 49, 907–916 (1996).