Contraction of the second seco

Robot-Assisted Stereotaxy Minimizes Target Error: A Meta-Analysis of 8,902 Trajectories Sara Thalheimer BA; Ashwini Dayal Sharan MD; Chengyuan Wu MD, MSBmE Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA

Introduction

Despite a growing number of frame-based, fiducial-based, and robot-assisted stereotactic methods, accuracy remains the driving force behind stereotaxy. At present, a direct comparison of all stereotactic methods has yet to be performed. The present study serves as a meta-analysis of 26 publications, reporting the overall accuracy of frame-based and skull fiducial-based systems, and further takes into account the influence of robot-assistance.

Methods

A PubMed search was performed for the following terms: "Leksell," "Cosman-Robert-Wells," "CRW," "NexFrame," "STarFix," "ClearPoint," "NeuroMate," "ROSA," "accuracy," and "error." No date restrictions were placed. Raw accuracy data was extrapolated and recorded. System-specific accuracy means and standard deviations were calculated; and z-scores were calculated to compare differences between each system.

	ALL TRIALS				CLINICAL TRIALS				PHANTOM TRIALS			
	Ν	Mean	±	SD	N	Mean	±	SD	N	Mean	±	SD
Frame-based	2249	1.89	±	1.12	449	2.47	±	1.42	1800	1.75	±	1.05
CRW	970	1.86	±	1.15	70	2.65	±	1.84	900	1.80	±	1.10
Leksell	1279	1.92	±	1.10	379	2.44	±	1.34	900	1.70	±	1.00
Fiducial-based	1630	1.93	±	1.07	1070	2.29	±	1.31	560	1.25	±	0.60
ClearPoint	18	1.00	±	0.57	18	1.00	±	0.57				
NexFrame	1067	1.72	±	0.93	507	2.25	±	1.30	560	1.25	±	0.60
STarFix	545	2.36	±	1.35	545	2.36	±	1.35				
Pobot-assisted	4506	1.68	+	0.65	2506	1 90	+	0.88	2000	1 41	+	0.38
NeuroMate	3080	1.62	±	0.70	1080	2.01	±	1.28	2000	1.41	±	0.38
ROSA	1426	1.81	±	0.55	1426	1.81	±	0.55				
Robot + frame-based	1030	0.86	±	0.32	30	0.86	±	0.32	1000	0.86	±	0.32
Robot + fiducial-based	3476	1.92	±	0.75	2476	1.91	±	0.88	1000	1.95	±	0.44

Table 1: Euclidian Target Error of Stereotactic Systems

A comparison of Euclidian target error between stereotactic methods.

Results

Across 24 studies and a total of 8,902 measurements, the average Euclidean target error for frame-based, fiducial-based, and robot-assisted procedures was 1.89 ± 1.12 mm (N = 2,249), 1.93 ± 1.07 mm (N = 1,630), and 1.68 ± 0.65 mm (N = 4,506), respectively. These data yield no statistical difference between frame-based and fiducial-based systems (p = 0.36), however, the use of a robotic system yielded a statistically significant increase in target accuracy (p < 0.01). Interestingly, when examining only clinically-derived measurements, fiducial-based systems demonstrate a statistically significant increase in accuracy over frame-based systems (p = 0.008), with mean target errors of 2.29 ± 1.31 mm (N = 1,070) versus 2.47 ± 1.42 mm (N = 449), respectively. Still, robot-assisted procedures were reported to have the greatest accuracy (p < 0.001), with a mean clinical target error of 1.90 ± 0.88 mm.

Conclusions

There are incremental improvements from frame-based to fiducial-based and from fiducial-based to robot-assisted of 0.39 mm and 0.18 mm, respectively. All systems demonstrated a mean Euclidean target error of < 2.5 mm and have demonstrated the ability to provide reliable electrode placement.