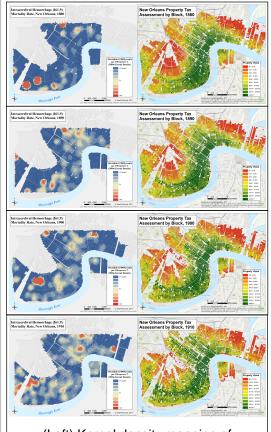


Spatiotemporal Analysis of the Relationship Between Socioeconomic Factors and Mortality Due to Nontraumatic Intracerebral Hemorrhage in New Orleans from 1880-1915

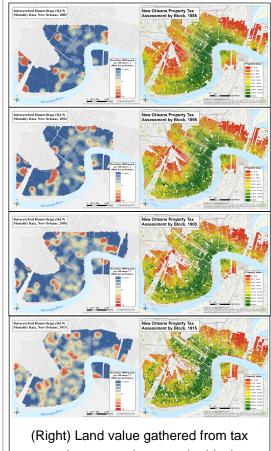

Ken Michael Porche MD; Sheridan Wright Kennedy University of Florida; Rice University

Introduction

Intracerebral hemorrhage (ICH) has been shown to display variations in geographic distribution, age, and racial predisposition. Understanding spatial disparities in the association between socioeconomic factors and ICH are critical to targeted public health initiatives aimed to mitigate or prevent this disease. We sought to describe the historical trends of mortality due to ICH during a time of substantial growth in New Orleans (1880-1915). This analysis is part of the New Orleans Mortality Project, which brings together historical perspective and new spatiotemporal approaches to understand how health, environment, and socioeconomics impacted urban and community development in New Orleans, 1880-1915.

Methods

As part of the New Orleans Mortality Project, we constructed a 50,000person mortality database from death certificates, a 40,000-record property value database from tax ledgers, and >500,000 base-level population datasets from city directories. 1540 patients died of ICH (age 60.2 ± 15.8 ; 54.4% Male; 69.2% White). We built historical address locators to geocode these datasets. Eight time periods were analyzed at 5-year intervals from 1880-1915. Fisher exact tests were used for analyses of sex and race. Unpooled t-tests were used to compare age and land value.



(Left) Kernel density mapping of
nontraumatic intracranial hemorrhage as
the cause of death.

Demographics

			יט	emo	yrap	11162				
		18	80	1885		1890		1895		
		ICH	ø ICH							
N		58	4569	98	5497	137	6267	167	5562	
Age (±SD)		57.2 (±16.5)	27.0 (±26.8)	60.2 (±15.5)	31.8 (±27.8)	60.5 (±14.7)	33.7 (±28.2)	60.1 (±16.0)	32.6 (±27.9)	
[in yrs]	р	<.0001		<.0001		<.00001		<.00001		
Ethnicity	W:C	2.63	2.45	1.97	2.80	2.26	2.67	2.11	2.60	
	р	0.885		0.106		0.384		0.253		
- 1	M:F	0.72	0.61	0.65	0.58	0.65	0.64	0.67	0.62	
Sex	p	0.178		0.258		0.334		0.384		
		1900		1905		1910		1915		
		ICH	ø ICH							
N		170	7259	236	7410	257	7638	398	8107	
Age (±	SD)	61.4 (±15.5)	34.9 (±26.8)	59.5 (±16.6)	37.8 (±25.9)	61.6 (±14.5)	40.3 (±26.5)	60.1(±16.5)	42.6 (±25.8)	
[in yrs]	p	<.0001		<.0001		<.0001		<.00001		
Ethnicity	W:C	2.07	2.16	3.05	2.60	2.88	2.17	1.89	2.04	
	р	0.802		0.336		0.055		0.512		
Sex	M:F	0.78	0.68	0.52	0.61	0.54	0.69	0.80	0.74	
		0.212		0.720		0.522		0.641		

Comparison of the count, sex, and race between those dying from nontraumatic intracranial hemorrhage and all others.

records averaged over entire blocks.

ICH Mortality Age Distribution

Land Value Significantly Lower in Areas Found to be ICH Hotspots

Year	Intra	cranial Hem	orrhage	Population			Unpooled t test			
	N	μ	σ	N	μ	σ	SE	t	df	p
1880	80	3458.7	4155.9	4149	13387.4	38075.4	751.9	-13.2	516	<.00001
1885	107	2667.2	3749.5	4131	16400.5	50747.3	868.8	-15.8	2217	<.00001
1890	14	6143.2	4238.3	4045	17240.4	50265.9	1381.2	-8.0	29	<.00001
1895	106	3758.1	4549.5	4071	18192.2	48966.4	885.6	-16.3	1372	<.00001
1900	49	2316.6	2409.7	3843	20043.4	52270.2	910.7	-19.5	1622	<.00001
1905	30	5446.5	6790.0	3729	23757.2	172717.5	3088.1	-5.9	922	<.00001
1910	36	8246.0	7928.0	3607	28621.6	91086.6	2011.5	-10.1	185	<.00001
1915	36	13904.0	13562.0	3717	29157.1	84062.4	2647.7	-5.8	66	<.00001

Hotspots considered as blocks (N) with 100+ deaths per 10,000 people

Results

- Increased rates of death due to ICH are shown along the periphery of population growth into areas of low income.
- Age was found to be statistically different for each year
- No statistical difference was found in sex or race

Conclusions

Mortality due to ICH (although a heterogeneous diagnosis) has ties to socioeconomic status apart from race and sex as evidenced by its spatiotemporal evolution during the geographic expansion and urban sprawl of New Orleans, 1880-1915. This relationship can be extrapolated and further compared to modern day trends. Modern day causes include hemorrhagic conversion of stroke, cerebral amyloid angiography, hypertension, and vascular lesions.

Future work

- Investigation of comorbidities in mortality database (i.e. heart disease, atherosclersosis)
- Kernel density regression analyses in order to better control for confounding factors and environmental factors
- Comparison of ICD-10 groupings of mortality in hotspots of ICH to all other areas to better understand the "mortality terrain" in these areas