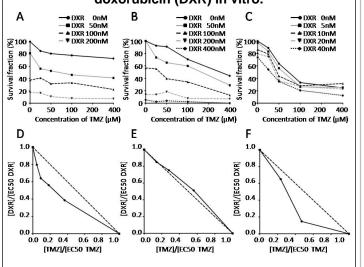


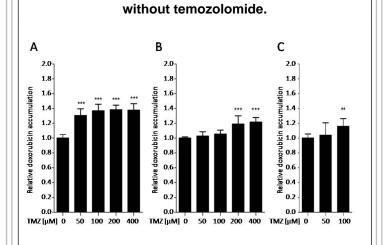
Temozolomide Reverses Doxorubicin Resistance by Inhibiting P-glycoprotein in Glioma Cells

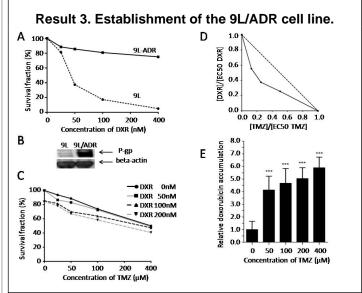
Rong Zhang MD; Ryuta Saito; Ichiyo Shibahara; Masayuki Kanamori; Yukihiko Sonoda; Teiji Tominaga MD, PhD Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyaqi, Japan

Result 2. Flow cytometric analysis showing the

intracellular accumulation of doxorubicin with or

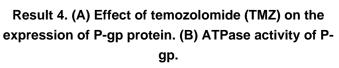

Introduction

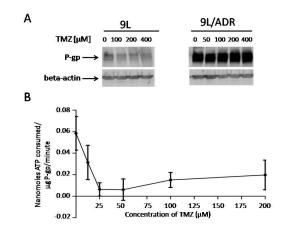

Although temozolomide is utilized as standard chemotherapeutant against malignant gliomas, the treatment represents one of the most formidable challenges in oncology. Combination chemotherapy using temozolomide with other anti-tumor compounds are under investigation.

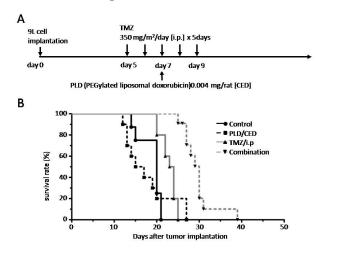

Methods

- Glioma cells : 9L gliosarcoma cells, doxorubicin (adriamycin) resistant 9L gliosarcoma cells (9L/ADR), T98G cells and U251MG cells
- Drugs: temozolomide/ doxorubicin/ pegylated liposomal doxorubicin
- Synergism: Isobologram assay
- P-glycoprotein (P-gp) expression: Western-blot
- P-glycoprotein activity: ATPase-assay
- Intracellular accumulation of doxorubicin: FACS
- Survival study: 9L glioma intracranial xenograft rat model

Result 1. Isobologram analysis showing the drug interaction effect of temozolomide (TMZ) with doxorubicin (DXR) in vitro.






Conclusions

We conclude that TMZ reverse doxorubicin resistance by directly affecting p-gp transport activity, and TMZ combine with other chemotherapeutic agents may be effective against gliomas in clinical applications.

Result 5. Effect of combination therapy of temozolomide (TMZ) with PLD on the intracranial xenograft 9L tumor rat model.

