

### Simultaneous Trial of Thalamic Deep Brain Stimulation and Motor Cortex Stimulation in Chronic,

#### **Intractable Neuropathic Pain**

Byung-chul Son

Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

#### Introduction

Both motor cortex stimulation (MCS) and deep brain stimulation (DBS) of the ventralis caudalis (Vc) thalamus have been shown to be effective in chronic neuropathic pain and modulation of thalamic and thalamocortical activity is regarded as a possible mechanism. Although Vc DBS and MCS share a common analgesic mechanism, application of MCS and DBS is still considered empirical and there is no consensus on which one is better.

#### Methods

We performed a simultaneous trial of thalamic Vc DBS and MCS in 9 patients with chronic neuropathic pain and investigated the results of the stimulation trial and long-term pain relief.

## Skull x-ray showing simulataneous application of thalamic DBS and MCS



| Demographics |                       |                                                |                               |                                           |                                     |                                      |                  |                            |                                               |                            |                           |
|--------------|-----------------------|------------------------------------------------|-------------------------------|-------------------------------------------|-------------------------------------|--------------------------------------|------------------|----------------------------|-----------------------------------------------|----------------------------|---------------------------|
| Pa-<br>tient | Sex/<br>age,<br>years | Diagnosis                                      | Duration<br>of pain,<br>years | Location<br>of pain                       | NRS<br>score<br>preopera-<br>tively | Surgical<br>target<br>(final target) | Trial<br>success | Length<br>of FU,<br>months | Duration<br>of analgesic<br>effect,<br>months | NRS<br>score at<br>last FU | Percent<br>pain<br>relief |
| 1            | M/63                  | spinal cord injury                             | 40                            | both extremities<br>(right more severe)   | 9                                   | Vc/PVG<br>MCS (MCS)                  | yes              | 68                         | 6                                             | 7                          | 22                        |
| 2            | M/66                  | CPSP<br>(pontine ICH)                          | 3                             | contralateral<br>hemibody                 | 8                                   | Vc/MCS<br>(MCS)                      | yes              | 42                         |                                               | 4                          | 50                        |
| 3            | M/47                  | amputation<br>stump pain                       | 5                             | left upper extremity                      | 8                                   | Vc/MCS<br>(Vc)                       | yes              | 68                         |                                               | 5                          | 37.5                      |
| 4            | F/52                  | CPSP                                           | 2                             | contralateral<br>hemibody                 | 7                                   | Vc/MCS<br>(MCS)                      | yes              | 48                         |                                               | 4                          | 43                        |
| 5            | M/63                  | spinal cord injury                             | 10                            | right upper<br>extremity,<br>right trunk  | 8                                   | Vc/MCS<br>(MCS)                      | yes              | 41                         |                                               | 7                          | 12.5                      |
| 6            | M/53                  | spinal cord injury<br>(transitional zone pain) | 3                             | left trunk                                | 8                                   | Vc/MCS                               | no               | N/A                        |                                               | 4                          | N/A                       |
| 7            | F/56                  | CPSP                                           | 4                             | contralateral trunk,<br>lower extremities | 8                                   | Vc/MCS<br>(MCS)                      | yes              | 16                         |                                               | 4                          | 50                        |
| 8            | F/32                  | cervical syrinx                                | 5                             | right upper<br>extremity                  | 8                                   | Vc/MCS<br>(Vc)                       | yes              | 16                         |                                               | 5                          | 37.5                      |
| 9            | M/75                  | CPSP                                           | 2                             | contralateral<br>hemibody                 | 8                                   | Vc/MCS<br>(MCS)                      | yes              | 12                         |                                               | 4                          | 50                        |

#### Results

Of the 9 patients initially implanted with both DBS and MCS electrodes, 8 of them (89%) had a successful trial. Six of these 8 patients (75%) responded to MCS and two out of the 8 patients responded to Vc DBS. With long-term follow-up, the mean NRS decreased significantly (p<0.05). Percentage pain relief in the chronic MCS group and chronic DBS group was  $37.9\pm16.5\%$  and 37.5%, respectively, and there was no difference (p=0.157).

#### Conclusions

Considering the initial success rate and the less invasive nature of epidural MCS than DBS, we think MCS would be a more reasonable, initial means of trial in chronic intractable neuropathic pain.

| term res                        | rm results      |  |  |  |  |  |
|---------------------------------|-----------------|--|--|--|--|--|
| Age, years                      | 49.3            |  |  |  |  |  |
| F:M, n                          | 3:6             |  |  |  |  |  |
| Duration of pain, years         | $8.1 \pm 12.2$  |  |  |  |  |  |
| NRS score (preoperative)        | $8 \pm 0.5$     |  |  |  |  |  |
| Successful trial stimulation, n |                 |  |  |  |  |  |
| MCS                             | 6               |  |  |  |  |  |
| DBS                             | 2               |  |  |  |  |  |
| Trial failure, n                | 1               |  |  |  |  |  |
| Length of follow-up, months     | $38.9 \pm 22.6$ |  |  |  |  |  |
| NRS score at last follow-up     | $5 \pm 1.3$     |  |  |  |  |  |
| Percentage of pain relief       |                 |  |  |  |  |  |
| MCS                             | $37.9 \pm 16.5$ |  |  |  |  |  |
| DBS                             | 37.5            |  |  |  |  |  |

#### Parameters of chronic stimulation

|                                   | 1       | 2    | 3           | 4    | 5       | 7       | 8      | 9       |
|-----------------------------------|---------|------|-------------|------|---------|---------|--------|---------|
| Diagnosis of pain                 | SCI     | CPSP | Amp.        | CPSP | SCI     | CPSP    | syrinx | CPSF    |
| Chronic stimulation               | MCS     | MCS  | Vc          | MCS  | MCS     | MCS     | Ýc     | MCS     |
| Parameters of chronic stimulation |         |      |             |      |         |         |        |         |
| Polarity                          | 1 - 2 + | 2-3+ | 0 - 1 - 2 + | C+2- | 0 - 1 + | 1 - 2 + | C+1-   | 1 - 2 + |
| Amplitude, V/mA                   | 2.5     | 2.8  | 2.5         | 3.0  | 2.3     | 2.8     | 1.6    | 3.0     |
| Rate, Hz                          | 30      | 160  | 30          | 45   | 60      | 30      | 50     | 60      |
| Pulse width, µs                   | 90      | 120  | 270         | 120  | 180     | 210     | 120    | 90      |

#### Learning Objectives

to decide which method of pain treatment, MCS or DBS, would be a more reasonable approach for patients with chronic neuroapthic pain.

#### References

9.Son BC, Kim MC, Moon DE, Kang JK: Motor cortex stimulation in a patient with intractable complex regional pain syndrome type II with hemibody involvement. Case report. J Neurosurg 2003;98:175-179.

17.Son B, Choi ES, JT Hong, SW Lee. Motor cortex stimulation for central pain caused by traumatic brain injury. Pain 2006

Simultaneous Trial of Thalamic Deep Brain Stimulation and Motor Cortex Stimulation in Chronic, Intractable Neuropathic Pain. Streotact Fuct Neurosurg 2014;92:218-226.

# Changes in medication

| atient | Preoperative usage                                                               |                                       | Postoperative usage (last follow-up)                      |                                      |  |  |  |
|--------|----------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------|--------------------------------------|--|--|--|
|        | anticonvulsant/antidepressant<br>weak opioid                                     | moderate-to-strong opioid             | anticonvulsant/antidepressant<br>weak opioid              | moderate-to-strong opioid            |  |  |  |
|        | gabapentin 1,800 mg<br>Ultracet 6T<br>amitriptyline 30 mg                        | -                                     | gabapentin 1,800 mg<br>Ultracet 9T<br>Mypol 3T            | morphine 90 mg<br>fentanyl 50 μg/h   |  |  |  |
|        | gabapentin 900 mg<br>tramadol 150 mg                                             | oxycodone 20 mg<br>fentanyl 25 μg/h   | gabapentin 800 mg<br>tramadol 150 mg                      | oxycodone 20 mg                      |  |  |  |
|        | gabapentin 1,800 mg<br>amitriptyline 20 mg                                       | oxycodone 40 mg<br>fentanyl 25 µg/h   | gabapentin 1,800 mg<br>amitriptyline 10 mg<br>Ultracet 3T | oxycodone 40 mg<br>fentanyl 25 µg/h  |  |  |  |
|        | pregabalin 300 mg<br>tramadol 150 mg<br>amitriptyline 10 mg                      |                                       | gabapentin 800 mg                                         |                                      |  |  |  |
|        | baclofen 60 mg<br>tramadol 100 mg<br>amitriptyline 20 mg                         | oxycodone 40 mg<br>fentanyl 50 µg/h   | baclofen 60 mg<br>tramadol 100 mg                         | oxycodone 100 mg<br>fentanyl 25 µg/h |  |  |  |
|        | pregabalin 150 mg<br>alprazolam 50 mg<br>amitriptyline 20 mg                     |                                       | gabapentin 1,200 mg<br>baclofen 30 mg                     |                                      |  |  |  |
|        | gabapentin 900 mg<br>alprazolam 50 mg<br>amitriptyline 20 mg                     | oxycodone 40 mg<br>fentanyl 12.5 µg/h | gabapentin 1,700 mg<br>alprazolam 50 mg                   | oxycodone 40 mg<br>IRcodon 15 mg     |  |  |  |
|        | gabapentin 1,200 mg<br>tramadol 100 mg<br>clonazepam 2 mg<br>amitriptyline 10 mg |                                       | gabapentin 800 mg<br>clonazepam 1 mg                      | oxycodone 40 mg                      |  |  |  |
|        |                                                                                  |                                       |                                                           |                                      |  |  |  |