

# Variation in Deep Brain Stimulation Electrode Impedance over Years Following Electrode Implantation

David Satzer BA; David Lanctin BS; Lynn E Eberly PhD; Aviva Abosch MD PhD

University of Minnesota, Minneapolis, MN, USA

70

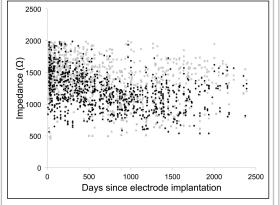


### Introduction

## Significance

- Deep brain stimulation (DBS) electrode impedance is a major determinant of current delivery to target tissues [1], but long-term changes in impedance have received little attention
- Variation in impedance has implications for longterm programming, development of closed-loop DBS devices, and understanding of the electrode -tissue interface

#### Prior research


- Studies of impedance over hours to days after implantation report early fluctuations with acute decrease in impedance in response to stimulation [2-4]
- Recent human studies carried out over 1-4 years following surgery have found that impedance decreases with time and is lower in active contacts [5-8]

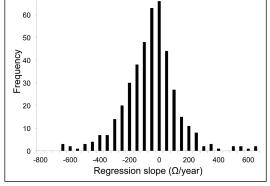
#### Present study

 Our objective was to assess the relationship between electrode impedance and time since implantation in a large DBS patient population and characterize the relationship between contact activity and impedance

## Table 1. Demographics

|                          | Electrodes<br>(patients) |
|--------------------------|--------------------------|
| Diagnosis                |                          |
| Parkinson's disease (PD) | 98 (64)                  |
| Essential tremor (ET)    | 20 (14)                  |
| Mixed PD and ET features | 1 (1)                    |
| Dystonia                 | 9 (5)                    |
| Total                    | 128 (84)                 |
| Target                   |                          |
| STN                      | 94                       |
| GPi                      | 14                       |
| VIM                      | 20                       |
| Electrode                |                          |
| Medtronic #3387          | 38                       |
| Medtronic #3389          | 90                       |
| Hemisphere               |                          |
| Left                     | 75                       |
| Right                    | 53                       |




*Figure 1.* Impedance versus time since electrode implantation. Black points = active contacts; gray points = inactive contacts.

# Methods

- Retrospective impedance and programming data from patients with Soletra implantable pulse generator
- 128 electrodes in 84 patients with Parkinson's disease (PD), essential tremor (ET), or dystonia (Dys)
- Mixed linear regression model used to assess effects of time, contact activity, diagnosis, anatomical target, electrode model, contact laterality, and contact number on impedance
- Impedance changes following contact activation and deactivation examined, as well as the effect of stimulation voltage on impedance

#### Table 2. Mixed linear regression results

|                   | Impe     | eda | nce    | Effect (Ω) | Р      |
|-------------------|----------|-----|--------|------------|--------|
| Time              |          |     |        | -73/year   | < .001 |
| Contact activity  | Inactive | >   | Active | 163        | < .001 |
| Diagnosis         | PD       | >   | ET     | 171        | < .001 |
|                   | PD       | >   | Dys    | 310        | < .001 |
|                   | ET       | *   | Dys    | -          | .08    |
| Anatomical target | STN      | >   | GPi    | 246        | < .001 |
|                   | STN      | >   | VIM    | 173        | < .001 |
|                   | GPi      | *   | VIM    | -          | .30    |
| Electrode         | #3389    | >   | #3387  | 181        | < .001 |
| Hemisphere        | Left     | *   | Right  | -          | .18    |



*Figure 2*. Variation in impedance trends by contact. Figure shows distribution of slopes from individual simple linear regression calculated for each contact. Mean = -80 ohms/y, SD = 183 ohms/y. 72% of the slopes were negative.

#### Results

- Impedance declined by 73 ohms/year (P < .001), and decreased in 72% of contacts
- Impedance was on average 163 ohms lower in active contacts (P < .001)</li>
- Activation of a contact was associated with a more rapid decline in impedance (121 ohms greater of a decline at the follow-up visit relative to a contact left off, P < .001) and inactivation was associated with a less rapid decline in impedance (81 ohms less, P = .016)
- Higher voltages were associated with lower impedances (P < .001)</li>
- Contact number and electrode model also predicted impedance

#### *Table 3.* Impedance vs. contact number

| Contact | Usage <sup>a</sup> | Mean impedance (Ω) <sup>b</sup> |
|---------|--------------------|---------------------------------|
| 0       | 44%                | 1347*                           |
| 1       | 49%                | 1265†                           |
| 2       | 51%                | 1230†                           |
| 3       | 29%                | 1309*                           |

All differences were significant. (a) P < .001. (b) P < .05 if same symbol, P < .001 if different symbols.

# Conclusions

# Time and stimulation

- Impedance decreased over time in a stimulation-dependent manner
- Electrode encapsulation is known to be associated with increases in impedance [1], while stimulation-induced oxidation at the electrode-tissue interface [2] and accumulation of CSF around the electrode may account for the observed decreases in impedance

# Electrode model

- Diagnosis, target, and electrode model had identical impedance relationships
- Geometric difference between electrode models is the simplest explanation
- Higher impedance in more closely spaced contacts and with monopolar stimulation may be related to electric fields around inactive contacts [9]

### Contact location

- Middle contacts (1 & 2) were used more frequently than outer contacts (0 & 4) and had lower impedances
- More frequent stimulation and placement in grey matter may explain these trends

#### References

1. Butson CR, Maks CB, McIntyre CC. Clin Neurophysiol. 2006;117(2):447-454. 2. Lempka SF, Miocinovic S, Johnson MD, Vitek JL, McIntyre CC. J Neural Eng. 2009;6(4):1-11. 3. Johnson MD, Otto KJ, Kipke DR. IEEE T Neur Sys Reh. 2005;13(2):160-165. 4. Rosa M, Marceglia S, Servello D, et al. Exp Neurol. 2010;222(2):184-190. 5. Hemm S, Vayssiere N, Mennessier G, et al. Neuromodulation. 2004;7(2):67-75. 6. Abosch A, Lanctin D, Onaran I, Eberly L, Spaniol M, Ince NF. Neurosurgery. 2012;71(4):804-814. 7. Sillay K a., Rutecki P, Cicora K, et al. Brain Stimulat. 2013:1-9. 8. Cheung T, Nuño M, Hoffman M, et al. Brain Stimulat. 2013. 9. Hemm S, Mennessier G, Vayssiere N, Cif L, El Fertit H, Coubes P. J Neurosurg. 2005;103(6):949-955.