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Introduction
Significance

Deep brain stimulation (DBS) electrode
impedance is a major determinant of current
delivery to target tissues [1], but long-term
changes in impedance have received little
attention

•

Variation in impedance has implications for long-
term programming, development of closed-loop
DBS devices, and understanding of the electrode
-tissue interface

•

Prior research
Studies of impedance over hours to days after
implantation report early fluctuations with acute
decrease in impedance in response to
stimulation [2-4]

•

Recent human studies carried out over 1-4 years
following surgery have found that impedance
decreases with time and is lower in active
contacts [5-8]

•

Present study
Our objective was to assess the relationship
between electrode impedance and time since
implantation in a large DBS patient population
and characterize the relationship between
contact activity and impedance

•

Table 1. Demographics

Figure 1.  Impedance versus time since electrode
implantation. Black points = active contacts; gray
points = inactive contacts.

Methods
Retrospective impedance and programming data
from patients with Soletra implantable pulse
generator

•

128 electrodes in 84 patients with Parkinson's
disease (PD), essential tremor (ET), or dystonia
(Dys)

•

Mixed linear regression model used to assess
effects of time, contact activity, diagnosis,
anatomical target, electrode model, contact
laterality, and contact number on impedance

•

Impedance changes following contact activation
and deactivation examined, as well as the effect
of stimulation voltage on impedance

•

Table 2. Mixed linear regression results

Figure 2. Variation in impedance trends by contact.
Figure shows distribution of slopes from individual
simple linear regression calculated for each contact.
Mean = -80 ohms/y, SD = 183 ohms/y. 72% of the
slopes were negative.

Results
Impedance declined by 73 ohms/year (P < .001),
and decreased in  72% of contacts

•

Impedance was on average 163 ohms lower in
active contacts (P < .001)

•

Activation of a contact was associated with a
more rapid decline in impedance (121 ohms
greater of a decline at the follow-up visit relative
to a contact left off, P < .001) and inactivation
was associated with a less rapid decline in
impedance (81 ohms less, P = .016)

•

Higher voltages were associated with lower
impedances  (P < .001)

•

Contact number and electrode model also
predicted impedance

•

Table 3. Impedance vs. contact number

All differences were significant. (a) P < .001. (b) P < .05
if same symbol, P < .001 if different symbols.

Conclusions
Time and stimulation

Impedance decreased over time in a
stimulation-dependent manner

•

Electrode encapsulation is known to be
associated with increases in impedance [1],
while stimulation-induced oxidation at the
electrode-tissue interface [2] and
accumulation of CSF around the electrode
may account for the observed decreases in
impedance

•

Electrode model
Diagnosis, target, and electrode model had
identical impedance relationships

•

Geometric difference between electrode
models is the simplest explanation

•

Higher impedance in more closely spaced
contacts and with monopolar stimulation
may be related to electric fields around
inactive contacts [9]

•

Contact location
Middle contacts (1 & 2) were used more
frequently than outer contacts (0 & 4) and
had lower impedances

•

More frequent stimulation and placement in
grey matter may explain these trends

•
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