

Comparative Utility of Dynamic and Static Imaging in the Management of Lumbar Spondylolisthesis Jeffrey Hatef MD; Sina Aghili-Mehrizi; Vibhu Krishnan Viswanathan; Amy Minnema; Francis Farhadi MD PhD Department of Neurological Surgery, The Ohio State University Wexner Medical Center

Introduction

Spinal instability refers to the inability of the spine to withstand daily stresses without incapacitating pain or neurologic deficit. Instability is traditionally investigated with flexion and extension (F-E) X-rays. Recently, abnormal spinal motion between supine and standing (S-S) views has been proposed as another diagnostic tool.

Methods

Between February 2010 and August 2016, 97 consecutive patients were identified that underwent either one- or two-level instrumented arthrodesis for degenerative lumbar instability. Patients were grouped into either Group 1 (=3 mm difference in spondylolisthesis between F-E X-rays) or Group 2 (=3 mm difference in spondylolisthesis between S-S imaging and otherwise not meeting Group 1 criteria). Pre-operative and post-operative clinical and radiologic data were collected ambispectively and compared between groups at a minimum of 1-year follow-up.

Lines A and B: Tangents to posterior vertebral border Line of Proximal and Distal Vertebrae, respectively Line C: Sagittal Translation

Fig 2 Supine- Standing Imaging

Lines A and B: Tangents to posterior vertebral border Line of Proximal and Distal Vertebrae, respectively Line C: Sagittal Translation

Results

Seventy-seven of 97 identified patients (80%) achieved at least one-year followup (average 32.4 months). Group 1 (n=27) and Group 2 (n=50) patients did not differ in average age (p=0.351), percent male (p=0.806), BMI (p=0.953), percent smoker (p=0.712), average spondylolisthesis (p=0.711), percent with severe index level foraminal stenosis (p=0.155). Average follow-up for Group 1 and Group 2 was 32.7 and 32.2 months, respectively (p=0.485). deltaSlipFE (average change in flexion-extension) was 4.8 mm for Group 1 and deltaSlipSS (average change in supine-standing) was 5.3 mm for Group 2. Posterolateral fusion was graded using the Lenke classification and found to be 88.9% A/B for Group 1 and 94.0% A/B for Group 2 (p=0.659). For both Group 1 and Group 2, VAS back (p=0.043 and p=0.001), VAS leg (p<0.0001 and p=0.001), ODIv2.1a (p=0.024 and p=0.002), and SF-36 RAND (p=0.016 and p=0.004) improved significantly. deltaVAS back (p=0.580) and leg (p=0.577), deltaODIv2.1a (p=0.585), and deltaSF-36 RAND (p=0.404) were not significantly different between the two groups.

Conclusions

No differences were noted in outcomes between Group 1 and 2 patients. These data suggest that assessment of instability based on static S-S imaging may identify a distinct group of patients that similarly benefit from surgery.

Comparison of pre-operative and postoperative VAS (Back and Leg), ODIv2.1a, and SF-36 RAND (Physical Functioning) between Group 1 and Group 2

Learning Objectives

 Patients with instability on F-E and S-S imaging appear to benefit similarly from lumbar decompression/fusion surgery
Movement on S-S imaging may represent a distinct form of spinal instability

3. S-S imaging may represent an alternative diagnostic modality in lumbar spondylolisthesis