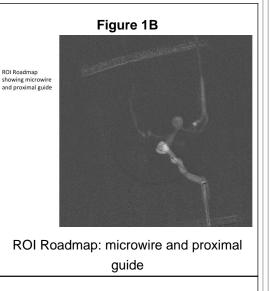


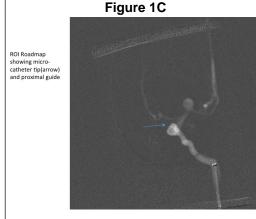
Spatially Different Temporal Filtering with X-Ray Attenuator: A Novel Technique of Dose Reduction in Neuro-endovascular Interventions

Ashish Sonig MD, MS, MCh; Swetadri Vasan Setlur Nagesh PhD; Sabareesh Kumar Natarajan MD MBBS MS; Marshall C. Cress MD; Stephan Munich BS, MD; Leonardo Rangel-Castilla MD; Ciprian Ionita; Daniel Bednarek; Kenneth V. Snyder MD, PhD; L. Nelson Hopkins MD; Elad I. Levy MD, FACS, FAHA, FAANS; Stephen Rudin; Adnan Hussain Siddiqui MD, PhD

Introduction

Dose reduction during fluoroscopy is of paramount importance. Our center(Ref1,2) has developed a novel patient-dose-savings technique for image-guided neurovascular interventions, involving a combination of a material x-ray region-of-interest(ROI) attenuator and spatially different temporal filtering. Our technique gives real time full field-of-view as against some previous techniques of restricted view (spot-fluoroscopy). We present our comparative clinical experience with standard flat panel angiography(FPA) and our technique (ROI-FPA).

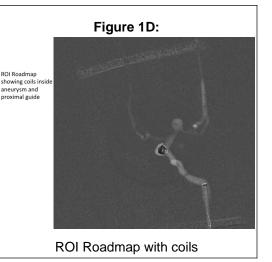

ROI Angiographic run, showing proximal and distal vasculature


Methods

Patient data (under IRB approval) from 10 patients(4-MCA-aneurysm, 5-ACA and 1-cavernous-ICA-aneurysms) were acquired using rotational-DSA and CTA for 3D rendering and processing. 3D-models were generated using an Eden-260V-3Dprinter(Object-Stratasys).We performed primary-coiling on the models(Figure-1) using a Toshiba Infinix C-arm. The dose incident to the patient is reduced by using a 0.7mm thick copper attenuator with a circular ROI hole in the middle. The attenuator is mounted inside the x-ray tube mechanism and can be deployed automatically when needed. Each 3D printed model was treated twice, using ROI-FPA and standard FPA. A total of 80 images at varied stages of intervention weres acquired. Each image was shown twice to two neurointerventionist and the images were rated individually. A total of answers to 400 questions based on visibility of aneurysm, proximaland distal vasculature, microwire, coil and guide tip were scored. The intra-rater agreements are measured by Kendall's-tau-b correlation coefficient and the inter-rater agreements are measured by kappa-statistics.

Results

For the thickness and size of the ROI attenuator used, a total integral-dose reduction of 62% was achieved. The mean scores obtained in the images when ROI was applied did not differ significantly from standard FPA images, suggesting similar image quality. The intra-rater agreement varied from (kendall tau 0.14 to 1) and inter-rater (kappa 0.16 to 0.52).



ROI Roadmap: Microcathter and guide

Learning Objectives

1. 62% reduction in radiation dosage could be achieved by our novel technique.

2. Image quality at both the center and periphery of FPA panel is not compromised.

Conclusions

Our study has shown that a significant dose reduction could be achieved without compromising the image quality during neuroendovascular interventions.

References:

 Swetadri Vasan SN, Ionita C, Bednarek DR, Rudin S. A novel Region of Interest (ROI) imaging technique for biplane imaging in interventional suites: high-resolution small field-ofview imaging in the frontal plane and dose-reduced, large field-of-view standard-resolution imaging in the lateral plane. Proc - Soc Photo-Opt Instrum Eng. 2014 Mar 19;9033:90332F.
Vasan S. S, Panse A, Jain A, Sharma

P, Ionita CN, Titus AH, et al. Dose Reduction Technique Using a Combination of a Region of Interest (ROI) Material X-Ray Attenuator and Spatially Different Temporal Filtering for Fluoroscopic Interventions. Proc SPIE. 2012 Feb 23;8313:831357