

# Angiopoletin-2 in Cerebrospinal Fluid and Serum as a Predictive Biomarker for Brain Injury.

Prashant Chittiboina MD, MPH; Vijay Ganta; Keith L Soctt MD; Walter E Cromer PhD; Michael J Mathis MA; Anil Nanda MD

FACS; Steven J Alexander PhD

Departments of Neurosurgery and Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA



# Introduction

As roles of angiopoietins in brain injury become better understood, clinical uses for Ang-2 as a vascular stress biomarker are increasingly being explored. Several studies have established serum Ang-2 as a marker of systemic illness severity, reflecting vascular injury. Less is known about how angiopoietins, e.g. pro-inflammatory Ang-2, change in other compartments in brain injury. Since Ang-2 is stable for 24 h and resists freeze-thaw cycles it may represent a reliable and durable clinical marker for brain vascular injury.



The Ang1 and Ang2 interplay is demonstrated at the Tie-2 receptor and the downstream affects of this interplay on inflammation, gap junction integrity and leukocyte recruitment.

# Methods

We compared Ang-2 in cerebrospinal fluid (CSF) collected from clinically defined subarachnoid hemorrhage (SAH, n=7) vs. controls (n=4) by immunoblotting.

# **Learning Objectives**

To identify changes in CSF biomarkers (e.g. angiopoietins/ Ang-1/Ang-2 ratios) that may provide novel clinical indicators both of disease severity and mechanism. To identify changes in the ratios of Angiopoietin-1 and -2 as well as their absolute levels that may represent important targets of therapy in brain injury.



The levels of Ang1 in the control and TBI group were not significantly different (p = 0.37). However, the Ang2 levels were markedly elevated in the TBI group compared to the control group (p = 0.001).

# Results

We found a large (2.66-fold) and significant (p=0.043)increase in Ang-2 (range = 8-370% of control). We also evaluated Ang-2 in serum from mice undergoing middle cerebral artery occlusion for 2h / 24 hours reperfusion, (I/R'). We observed a significant decrease (p=0.001) in serum Ang-2 levels after I/R. Despite differences in mouse and human samples, these results suggest contrasting changes in serum and CSF Ang-2, with ischemic injury decreasing serum Ang-2 with a concomitant increase in CSF Ang-2.

# Conclusions

The results suggests that serum/CSF Ang-2 ratios may be a useful biomarker of vascular stress and temporal changes in serum/CSF ratios may predict disease severity and prognosis. Further experiments to confirm serum Ang -2 in SAH and traumatic brain injury TBI are underway to validate these markers in SAH/TBI.



SAH CSF samples. Western blots showed a significant increase in Ang2 levels in human SAH CSF samples compared to controls Twoway ANOVA

### Serum angiopoietin change in mouse stroke model

Immunoblot of Ang2 in I/R mouse serum samples Sham Stroke Densitometry of sorum Ang2 levels in mouse model of stroke P=0.001 Con

