

VTE in Patients Undergoing Craniotomy for Brain Tumors: A NSQIP Analysis

David J. Cote BS; Heloise H. Dubois; Aditya Vishwas Karhade BE; Timothy R. Smith MD, PhD, MPH
Cushing Neurosurgery Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical
School, Boston, MA

Introduction

- Patients undergoing craniotomy for brain tumors have an increased risk of developing venous thromboembolism (VTE), a condition that can lead to death via PE, prolonged hospital stay, and increased costs.
- Using the NSQIP database, we analyzed patients with brain tumors undergoing craniotomies to identify risk factors for post-operative VTE from 2006-2014.

Methods

- Our study population, identified by CPT codes, included NSQIP patients who underwent a craniotomy for brain tumor resection as their primary procedure.
- Multivariate binary logistic regression was used to identify risk factors for post-operative VTE.

Table 1: Multivariable logistic regression model identifying predictors of VTE in patients undergoing craniotomy for brain tumors.

Predictor	Definition	Odds Ratio	95% CI	P-Value
Age (years)	Lower quartile (<46)	Ref.	-	-
	Second quartile (46-57)	1.432	1.108-1.849	0.006
	Third quartile (57-66)	1.550	1.206-1.993	0.001
	Upper quartile (>66)	2.493	1.95-3.187	< 0.001
	Missing	1.51	1.5.1	
BMI (kg/m ²)	Lower quartile (<24.2)	Ref.	_	_
	Second quartile (24.2-27.8)	1.070	0.825-1.388	0.611
	Third quartile (27.8-32.1)	1.432	1.122-1.828	0.004
	Upper quartile (>32.1)	1.835	1.448-2.325	< 0.001
	Missing	0.905	0.514-1.594	0.73
Functional Dependence	18/2 (18/11)	1.657	1.269-2.162	< 0.001
Ventilator Dependence		2.516	1.543-4.103	< 0.001
Steroid Use		1.661	1.372-2.012	< 0.001
Prior Sepsis		1.845	1.33-2.56	< 0.001
Total operative time (minutes)	Lower quartile (<123)	Ref.	-	-
	Second quartile (123-183)	0.909	0.615-1.343	0.631
	Third quartile (183-271)	1.462	1.034-2.068	0.032
	Upper quartile (>271)	1.945	1.394-2.713	< 0.001

Abbreviations: BMI=body mass index; VTE=venous thromboembolism

Results

- From 2006 to 2014, there were 629 instances of VTE among 19,409 total cases (3.2%) according to the NSQIP database.
- On bivariate analysis, 12 additional post-operative complications, including stroke/CVA, post-operative infection, and unplanned intubation were found to be more common in patients with VTE than those without.
- On multivariate analysis, risk factors for VTE included age (p<0.001), body mass index in the highest quartile (OR=2.190, p<0.001), impaired sensorium (OR=1.889, p=0.016), hemiplegia (OR=1.837, p<0.007), disseminated cancer (OR=0.546, p=0.021), steroid use (OR=1.784, p<0.002), and operation time in the highest quartile (OR=1.893, p=0.012).

Conclusions

- According to the NSQIP database, VTE occurs in about 3% of patients undergoing craniotomy for brain tumor resection.
- Predictors for developing VTE include age, BMI, impaired sensorium, hemiplegia, steroid use, prior sepsis and total operative time.

Learning Objectives

By the conclusion of this session, participants should be able to:

- 1) Understand risk factors for development of VTE in patients undergoing craniotomy for brain tumors.
- 2) Appreciate the overall increased risk of VTE in patients undergoing craniotomy for brain tumors.

References

- 1. Cote DJ, Smith TR. Venous thromboembolism in brain tumor patients. Journal of clinical neuroscience; 2016;25:13-18
- 2. Smith TR, Nanney AD, 3rd, Lall RR, et al. Development of venous thromboembolism (VTE) in patients undergoing surgery for brain tumors: results from a single center over a 10 year period. Journal of clinical neuroscience: official journal of the Neurosurgical Society of Australasia 2015;22(3):519-525
- 3. Algattas H, Kimmell KT, Vates GE, Jahromi BS. Analysis of Venous Thromboembolism Risk in Patients Undergoing Craniotomy. World neurosurgery 2015;84(5):1372-1379
- 4. Kimmell KT, Jahromi BS. Clinical factors associated with venous thromboembolism risk in patients undergoing craniotomy. Journal of Neurosurgery 2015;122(5):1004-1011
- 5. Ahmad Khaldi, Naseem Helo, Michael J. Schneck, Thomas C. Origitano. Venous thromboembolism: deep venous thrombosis and pulmonary embolism in a neurosurgical population. Journal of Neurosurgery 2011;114(1):40-46
- 6. Goldhaber SZ, Dunn K, Gerhard-Herman M, Park JK, Black PM. Low rate of venous thromboembolism after craniotomy for brain tumor using multimodality prophylaxis. Chest 2002;122(6):1933-1937