

Intra-thecal Antibiotic for Post-operative Gram Negative Meningitis and Ventriculitis

Saad Akhtar Khan MD Aga Khan University Hospital, Karachi, Pakistan

Introduction

Postoperative meningitis and ventriculitis are probably the most feared delayed complications of neurosurgical procedures. Alarming is the rising incidence of multidrugresistant organisms in these infections that make their treatment a daunting challenge. The authors evaluate the use of intraventricular/intrathecal antibiotics for postoperative Gram-negative meningitis.

Methods

Adult consecutive patients with cerebrospinal fluid (CSF) culture proven Gram-negative postoperative meningitis/ventriculitis, in which intravenous antibiotics were ineffective were included from last three years.

	Age/ Gender	Pathology	Primary Surgery	Organism	IVT/IT antibiotic	Route	CSF negativit	Days to y sterility	Biochemical Outcome	Clinical Outcome	Admission GCS	Discharge GCS	Length hospita stay
1.	51/M	SAH, Anterior Circulation Angunysm	Craniotomy	ATSP	PMB	LD	Yes	4	Cure	-	30	9	48
	44/M	SAH, Anterior Circulation Angunysm	Craniotomy	ATSP	PMB	EVD	Yes	2	Cure	Uf	14	14	36
	35/M	SAH, Anterior Circulation Angunsm	Craniotomy	ATSP	COL	EVD	Yes	7	Cure	UF	4	6	46
	61/F	Supratentorial Primary Brain Tumor	Craniotomy	ATSP	AMK	LD	Yes	10	Cure	F	15	14	76
	45/1	Supretentorial Primary Brain Tumor	Craniotomy	PSAE	AMK	LD	Yes	2	Cure	*	15	15	55
	26/M	Supratentorial Primary Brain Tumor	Craniotomy	ATSP	PMB	EVD	Yes	3	Cure	7	5	6	41
	29/M	Supratentorial Primary Brain Tumor	Craniotomy	ATSP	PMB	EVD	Yes	7	Cure	UF	15	9	42
	58/M	Supratentorial Primary Brain Tumor	Craniotomy	ATSP/ENCL	PMB	LD	Yes	16	Cure	F	10	9	77
	33/M	Supratentorial Primary Brain Tumor	Craniotomy	ENCL	AMK	EVD	Yes	14	Cure	Uf	15	10	72
	36/M	Supratentorial Primary Brain Tumor	Craniotomy	ATSP	PMB + AME	EVD	Yes	5	Cure	Uf	12	9	51
	26/M	Traumatic Brain Injury	Craniotomy	ATSP	PMB	EVD	Yes	8	Cure	F	12	11	69
	43/M	Traumatic Brain Injury	Craniotomy	ATSP	PMB	EVD	Yes	13	Cure	F	10	12	38
	29/M	Traumatic Brain Injury	Craniotomy	PM	PMB	LD	Yes	6	Cure	7	30	10	25
	47/F	Traumatic Brain Injury	Craniotomy	ATSP	COL	EVD	Yes	7	Cure	UF	3	7	56
	60/F	Traumatic Brain Injury	Craniotomy	ATSP	cor	LD	Yes	4	Cure	In Hospital Mortality	14	-	20
	55/M	Traumatic Brain Injury	Craniotomy	ATSP	COL	EVD	Yes	6	Cure	UF	4	5	29
	44/M	Traumatic Brain Injury	Craniotomy	KLPN	AMK	LD	Yes	10	Cure	UF	10	7	32
	44/F	Traumatic Brain Injury	Craniotomy	PSAE/KLPN	COL	EVD	Yes		Cure		11	11	56
	34/M	Third Ventricle Colloid Cyst	Craniotomy	KLPN	AMK	EVD	Yes	7	Cure	F	15	14	34
	57/M	Hydrocephalus	EVD	KLPN	AMK	EVD	Yes	5	Cure	F	12	10	257
	36/M	SpinalCord Lipoma	Laminectomy	ATSP	PMB	LD	Yes	5	Cure	F	15	15 23	

Results

Of the 21 patients in our study, 8 had GCS of >12 while the remaining had a GCS < 12. Acinetobacter was the most common organism isolated on CSF culture (n=14) followed by Klebsiella. Three antibiotics were used in the IVT/IT treatment group; Amikacin, Polymixin B and Colistin. Amikacin was used in 7, Polymixin B in 9 and Colistin in 5 patients. An EVD was used for administration in 13 cases (62%) and lumbar drain in 8 (38%) patients. The median duration between starting of IT/IVT after being diagnosed with meningitis/ventriculitis was 3 days. The median duration of IVT/IT therapy was 15 (9-25) days. CSF sterility was achieved in all of the patients with a median time to sterility being 7.1 + 3.8 (Range 2-16) days. Discharge GCS improved in 2, remained the same in 7 and deteriorated in 12 patients. Median hospital stay was 38 days (20-257days) with the EVD group [46 (29-72)] and LD group [32.5 (20-76) days) p-value 0.07. At 6 months follow-up favorable outcomes were seen in 14 (66.7%) patients and 7 (33.3%) patients remained in an unfavorable state. One patient died during treatment the cause of death was found to be a massive pulmonary embolus.

Table 2:

Antimicrobial agent	Acinetobacter species n=14	Enterobacter species n=2	Klebsiella Pneumonia n=4	Pseudomonas Aeroginosa n=2	Total n= 22"
Amikacin	10	1	1	1	13 (59.1%)
Carbapenem	11	0	0	0	11 (50%)
Cephalosporin	14	1	4	0	19 (86.4%)
Clotrimoxazole	10	0	4	0	14 (63.6%)
Gentamycin	12	1	3	0	16 (72.7%)
Polymyxin B	0	1	3	0	4 (18.2%)
Quinolone	9	0	1	0	10 (45.5%)

^a Patient 14 and 21 had two causative organisms as shown in Table 1

Antimicrobial Resistance of Causative Organisms

Table 3:

Author	Year of Study	Number of patients	used		Outcome	CSF sterili ty	Most common organism	Most common antibiotic	Major adverse effect of IVT/IT
Our study	2014	21	13	8	F: 11 (52.3%) UF: 9 (42.9%) D: 1 (4.8%)	100%	ACSP	Polymyxin B	None
Wang J-H et al	2012	15	NA	NA	F+UF: 11(73.3%) D: 4 (26.67%)	73.3%	ACSP	Amikacin	None
Tangden et al	2011	13	10	3	F: NA UF: NA D: 3 (23%)	100%	ENSP	Meropenem	None
Remes et al	2013	9	1	8	F: 1 (11.1%) UF: 6 (66.67%) D: 2 (22.2%)	100%	KLPN	Gentamycin	None

*ATSP = Acinetobacter species; ENSP = Enterobacter species; KLPN= Klebsiella pneumonia; NA= Not available; F = Favorable; UF= Unfavorable; C=Cure; D=Death.

Comparison with Other Studies

Conclusions

The findings of this study suggest that IVT antibiotic therapy is a useful option especially in patients who are non-responsive to standard intravenous therapy with little or no side effects.

References

1.Wang, K.W., et al., Post-neurosurgical nosocomial bacterial meningitis in adults: microbiology, clinical features, and outcomes. J Clin Neurosci, 2005. 12(6): p. 647-50. 2.Lu, C.H., W.N. Chang, and Y.C. Chuang, Resistance to third-generation cephalosporins in adult gram-negative bacillary meningitis. Infection, 1999. 27(3): p. 208-11. 3.Talon, D., et al., Clinical and

molecular epidemiology of chromosome-mediated resistance to third-generation cephalosporins in Enterobacter isolates in eastern France. Clin Microbiol Infect, 2000. 6(7): p. 376-84.

4.Federico, G., et al., Risk factors and prognostic indicators of bacterial meningitis in a cohort of 3580 postneurosurgical patients. Scand J Infect Dis, 2001. 33(7): p. 533-7. 5.Clifford, H.E. and G.T. Stewart, Intraventricular administration of a new derivative of polymyxin B in meningitis due to Ps. pyocyanea. Lancet, 1961. 2(7195): p. 177-80.