

CONGRESS OF NEUROLOGICAL SURGEONS SYSTEMATIC REVIEW AND EVIDENCE-BASED GUIDELINE ON HEARING PRESERVATION OUTCOMES IN PATIENTS WITH SPORADIC VESTIBULAR SCHWANNOMAS

1

5	
6	Sponsored by: Congress of Neurological Surgeons (CNS) and the Section on Tumors
7	Endorsed by: Joint Guidelines Committee of the American Association of Neurological
8	Surgeons (AANS) and the Congress of Neurological Surgeons (CNS)
9	Authors: Matthew L. Carlson, MD ^{1,2} , Esther X. Vivas, MD ³ , D. Jay McCracken, MD ⁴ , Alex D.
10	Sweeney, MD ⁵ , Brian A. Neff, MD ^{1,2} , Neil T. Shepard, PhD ¹ , Jeffrey J. Olson, MD ⁴
11	1. Department of Otorhinolaryngology, Mayo Clinic, School of Medicine, Rochester, Minnesota,
12	USA
13	2. Department of Neurologic Surgery, Mayo Clinic, School of Medicine, Rochester, Minnesota,
14	USA
15	3. Department of Otolaryngology-Head & Neck Surgery, Emory University School of Medicine,
16	Atlanta, Georgia, USA
17	4. Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
18	5. Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of
19	Medicine, Houston, Texas, USA
20	Correspondence:
21	Matthew L. Carlson, MD
22	Department of Otorhinolaryngology
23	Department of Neurosurgery
24	Mayo Clinic, 200 First St. SW
25	Rochester, Minnesota 55905
26	Telephone: 507-284-8532
27	Fax: 507-284-3907
	1

- 28 Email: carlson.matthew@mayo.edu
- 29 Keywords: Acoustic neuroma, hearing loss, hearing preservation, radiosurgery, skull base,
- 30 surgery, vestibular schwannoma
- 31

32 Abbreviations

- 33 AAO-HNS: American Academy of Otolaryngology-Head and Neck Surgery
- 34 CSF: Cerebrospinal fluid
- 35 GR: Gardner–Robertson hearing classification
- 36 HL: Hearing loss
- 37 NF2: Neurofibromatosis type 2
- 38 VS: Vestibular schwannoma
- 39 No part of this manuscript has been published or submitted for publication elsewhere.
- 40 ABSTRACT
- 41 Radiation
- 42 **Question**
- 43 What is the overall probability of maintaining serviceable hearing following single-fraction
- 44 radiation therapy, utilizing modern dose planning, at two years, five years, and ten years
- 45 following treatment?
- 46 **Target population**
- 47 These recommendations apply to all adults with sporadic vestibular schwannomas who have
- 48 documented serviceable hearing in the ipsilateral ear prior to treatment and have received single-
- 49 fraction stereotactic radiation, using \leq 13 Gy to the tumor margin.
- 50 Recommendation
- 51 *Level 3*: Individuals who meet these criteria and are considering stereotactic radiosurgery should
- 52 be counseled that there is moderately high probability (> 50% to 75%) of hearing preservation at
- 53 two years, moderately high probability (> 50% to 75%) of hearing preservation at five years, and
- 54 moderately low probability (> 25% to 50%) of hearing preservation at ten years.
- 55 Question

- 56 Among patients with AAO-HNS class A or GR grade I hearing at baseline, what is the overall
- 57 probability of maintaining serviceable hearing following single-fraction radiation therapy,
- 58 utilizing modern dose planning, at two years, five years, and ten years following treatment?

- 60 These recommendations apply to adults with sporadic vestibular schwannomas who have
- 61 documented AAO-HNS class A or GR grade I hearing in the ipsilateral ear prior to treatment and
- 62 have received single-fraction stereotactic radiation using \leq 13 Gy to the tumor margin.
- 63 Recommendation
- 64 *Level 3*: Individuals who meet these criteria and are considering stereotactic radiosurgery should
- be counseled that there is a high probability (> 75% to 100%) of hearing preservation at two
- 66 years, moderately high probability (> 50% to 75%) of hearing preservation at five years, and
- 67 moderately low probability (> 25% to 50%) of hearing preservation at ten years.

68 Question

- 69 What patient- and tumor-related factors influence progression to non-serviceable hearing
- following single-fraction stereotactic radiation treatment using \leq 13 Gy to the tumor margin?

71 Target population

- 72 These recommendations apply to adults with sporadic vestibular schwannomas who have
- received single-fraction serviceable hearing in the ipsilateral ear prior to treatment and have received single-fraction
- stereotactic radiation using ≤ 13 Gy to the tumor margin.
- 75 Recommendation
- 76 *Level 3*: Individuals who meet these criteria and are considering stereotactic radiosurgery should
- be counseled regarding the probability of successful hearing preservation based on the following
- 78 prognostic data: the most consistent prognostic features associated with maintenance of
- recognition and/or pure tone thresholds with
- 80 variable cut-points reported, smaller tumor size, marginal tumor dose \leq 12 Gy, and cochlear dose
- 81 \leq 4 Gy. Age and sex are not strong predictors of hearing preservation outcome.
- 82 Surgery
- 83 **Question**

- 84 What is the overall probability of maintaining serviceable hearing following microsurgical
- 85 resection of small to medium-sized sporadic vestibular schwannomas early after surgery, at two
- 86 years, at five years, and at ten years following treatment?

- 88 These recommendations apply to adults with small to medium-sized (< 2 cm) sporadic vestibular
- schwannomas who have documented serviceable hearing in the ipsilateral ear prior to
- 90 microsurgical resection via the middle cranial fossa or retrosigmoid approach.
- 91 Recommendation
- 92 Level 3: Individuals who meet these criteria and are considering microsurgical resection should
- 93 be counseled that there is a moderately low probability (> 25% to 50%) of hearing preservation
- 94 immediately following surgery, moderately low probability (> 25% to 50%) of hearing
- 95 preservation at two years, moderately low probability (> 25% to 50%) of hearing preservation at
- 96 five years, and moderately low probability (> 25% to 50%) of hearing preservation at ten years.

97 **Question**

- Among patients with AAO-HNS class A or GR grade I hearing at baseline, what is the overall
- 99 probability of maintaining serviceable hearing following microsurgical resection of small to
- 100 medium-sized sporadic vestibular schwannomas early after surgery, at two years, at five years,
- 101 and at ten years following treatment?

102 **Target population**

- 103 These recommendations apply to adults with small to medium-sized (< 2 cm) sporadic vestibular
- schwannomas who have documented AAO-HNS class A or GR grade I hearing in the ipsilateral
- 105 ear prior to microsurgical resection via the middle cranial fossa or retrosigmoid approach.

106 **Recommendation**

- 107 Level 3: Individuals who meet these criteria and are considering microsurgical resection should
- 108 be counseled that there is a moderately high probability (> 50% to 75%) of hearing preservation
- 109 immediately following surgery, moderately high probability (> 50% to 75%) of hearing
- 110 preservation at two years, moderately high probability (> 50% to 75%) of hearing preservation at
- 111 five years, and moderately low probability (> 25% to 50%) of hearing preservation at ten years.

112 **Question**

- 113 What patient- and tumor-related factors influence progression to non-serviceable hearing
- 114 following microsurgical resection of small to medium-sized sporadic vestibular schwannomas?

- 116 These recommendations apply to adults with small to medium-sized (< 2 cm) sporadic vestibular
- schwannomas who have documented serviceable hearing in the ipsilateral ear prior to
- 118 microsurgical resection via the middle cranial fossa or retrosigmoid approach.

119 **Recommendation**

- 120 *Level 3*: Individuals who meet these criteria and are considering microsurgical resection should
- be counseled regarding the probability of successful hearing preservation based on the following
- 122 prognostic data: the most consistent prognostic features associated with maintenance of
- serviceable hearing are good preoperative word recognition and/or pure tone thresholds with
- 124 variable cut-points reported, smaller tumor size, commonly < 1 cm, and presence of a distal
- 125 internal auditory canal cerebrospinal fluid fundal cap. Age and sex are not strong predictors of
- 126 hearing preservation outcome.

127 **Observation**

128 **Question**

- 129 What is the overall probability of maintaining serviceable hearing with conservative observation
- 130 of vestibular schwannomas at two years, five years, and ten years following diagnosis?
- 131 Target population
- 132 These recommendations apply to adults with small to medium-sized sporadic vestibular
- 133 schwannomas who have documented serviceable hearing in the ipsilateral ear at time of
- 134 diagnosis.

135 Recommendation

- 136 Level 3: Individuals who meet these criteria and are considering observation should be counseled
- that there is a high probability (> 75% to 100%) of hearing preservation at two years, moderately
- high probability (> 50% to 75%) of hearing preservation at five years, and moderately low
- 139 probability (> 25% to 50%) of hearing preservation at ten years.

140 **Question**

- 141 Among patients with AAO-HNS class A or GR grade I hearing at baseline, what is the overall
- 142 probability of maintaining serviceable hearing with conservative observation at two years, and
- 143 five years following diagnosis?

- 145 These recommendations apply to adults with small to medium-sized (< 2 cm) sporadic vestibular
- schwannomas who have documented class A or GR grade I hearing in the ipsilateral ear at time
- 147 of diagnosis.
- 148 Recommendation
- 149 Level 3: Individuals who meet these criteria and are considering stereotactic radiosurgery should
- be counseled that there is a high probability (> 75% to 100%) of hearing preservation at two
- 151 years, and moderately high probability (> 50% to 75%) of hearing preservation at five years.
- 152 Insufficient data were available to determine the probability of hearing preservation at ten years
- 153 for this population subset.

154 **Question**

- 155 What patient- and tumor-related factors influence progression to non-serviceable hearing during
- 156 conservative observation?

157 **Target population**

- 158 These recommendations apply to adults with small to medium-sized (< 2 cm) sporadic vestibular
- 159 schwannomas who have documented serviceable hearing in the ipsilateral ear at time of
- 160 diagnosis.

161 **Recommendation**

- 162 *Level 3*: Individuals who meet these criteria and are considering observation should be counseled
- 163 regarding probability of successful hearing preservation based on the following prognostic data:
- 164 the most consistent prognostic features associated with maintenance of serviceable hearing are
- 165 good preoperative word recognition and/or pure tone thresholds with variable cut-points
- 166 reported, as well as non-growth of the tumor. Tumor size at the time of diagnosis, age, and sex
- 167 do not predict future development of non-serviceable hearing during observation.

168 INTRODUCTION

169 *Rationale*

Over the last 100 years, there has been a significant shift in VS outcome priorities.^{1,2} Prior to 170 171 Harvey Cushing's monumental treatise in 1917, Tumors of the Nervus Acusticus and Syndrome of the Cerebellopontile Angle, the mortality of surgery for VSs reached 80%.³ Early advances 172 173 pioneered by Cushing, and later his protégé and rival Walter Dandy, resulted in an 174 unprecedented \sim 50% reduction in mortality at a time when tumors commonly presented late in course with hydrocephalus.¹⁻⁴ However, despite such improvements, permanent cranial nerve 175 176 injury was common and considered an unavoidable compromise for the treatment of life-177 threatening tumor growth.

178

179 Advancements in technology and surgical techniques during the 1950s and 1960s culminated in 180 the application of the surgical microscope and electrical dental drill to VS surgery by William House.⁵⁻⁸ In addition, it was during this time that the subtemporal middle cranial fossa and 181 182 translabyrinthine approaches were revitalized after being abandoned nearly 60 years earlier because of technical prematurity.^{5,7,9,10} Simultaneously, Lars Leksell, a pupil of the preeminent 183 184 neurosurgeon Herbert Olivecrona of Sweden, pioneered the development of his arc centered 185 stereotactic frame as a means of noninvasive, precise ablation of intracranial lesions utilizing convergent beam radiation.^{11,12} In reaction to witnessing the morbidity of surgical resection even 186 187 in the best hands, in 1971, Leksell published the inaugural account of VS treatment using stereotactic radiation.¹³ These simultaneous advancements in microsurgery and radiosurgery 188 ushered the transition of priority from life preservation to cranial nerve preservation.² For the 189 190 first time in the history of VS management, tumors could be effectively treated with the intent of 191 tumor control and facial nerve preservation. Successive advances in technique and 192 neuromonitoring facilitated further improvements in facial nerve outcomes and hearing preservation via the middle cranial fossa and transmeatal retrosigmoid craniotomy.^{14,15} 193 194 195 The most recent era in VS treatment was enabled by developments in noninvasive neuroimaging,

196 including contrast-enhanced computed tomography and magnetic resonance imaging. In this

197 setting, tumor observation with serial imaging became a viable strategy. Initially, only patients

198 with minimal symptoms, small tumors, advanced age, or severe comorbidities were considered

for a conservative "wait-and-scan" strategy; however, over time, this approach has been adopted
with increasing frequency.^{16,17} Since 1976, Gentofte University Hospital of Copenhagen
Denmark has pioneered the reporting of VS natural history data, where a national centralized
care center for VS treatment has been maintained.^{18,19}

203

The evolution in treatment over the last century has ultimately led to an environment where functional outcome has taken precedence over disease eradication.¹⁰ With multiple noninvasive management options available, the tolerance of cranial neuropathy in patients with small to medium-sized tumors is low. Today, hearing preservation, facial nerve function, and tumor control remain the primary benchmarks used to evaluate treatment effectiveness and compare outcomes.

210

211 Unilateral hearing loss (HL) is associated with impairment in speech understanding in noise and sound localization, leading to a reduction in quality of life.²⁰⁻²² In addition, binaural hearing 212 213 remains critical to occupation performance for some, including individuals involved in law enforcement or military service, for example. Furthermore, progressive HL from a VS in an only 214 hearing ear can be functionally devastating.²² Thus, characterizing HL over time following 215 216 treatment or conservative observation is critical, particularly in the setting of "benign" disease 217 where patients are expected to live many decades beyond diagnosis and the treatment and effects 218 of age-related HL will only compound hearing disability from disease.

219

220 Unfortunately, data in the VS literature regarding long-term hearing preservation are conflicting. 221 Fueled by disparate study methodology and heterogeneous reporting, a general consensus regarding realistic expectations of long-term preservation of useful hearing is lacking.²³⁻²⁵ For 222 223 example, there are at least 8 different hearing classification systems that have been used in the 224 literature, and in many reports, "hearing preservation" simply refers to maintenance of any detectable hearing, regardless of functionality.²⁶⁻³⁵ Even when hearing preservation rates are 225 226 reported, it is not always clear what percentage of patients started with useful hearing, which of 227 course is critical to understand when comparing between studies and comparing treatment modalities.²⁵ Within these classification systems, the cutoff for "useful" or "serviceable" hearing 228

- is often different. In addition, study inclusion and treatment selection bias often limits the
- 230 clinician's ability to draw strong conclusions that can be applied to the general VS population.
- 231

232 *Objectives*

- 233 This systematic review and clinical practice guideline focuses on summarizing the probability of
- hearing preservation within the first 10 years after contemporary stereotactic radiation delivery,
- 235 microsurgery, or observation with serial imaging. In addition, candidate prognostic features, such
- as tumor size and location, patient age, pretreatment hearing status, and others are explored.
- 237
- 238 Notably, this systematic review and clinical practice guideline concentrates primarily on patient-
- and tumor-related factors. Detailed analysis of radiosurgical planning parameters, cochlear
- 240 shielding strategies, comparison of surgical approaches, and methods of eighth nerve monitoring
- are deferred because they are reviewed thoroughly in other guidelines in this series.

242 **METHODS**

243 Process Overview

- 244 The evidence-based clinical practice guideline task force members and the Joint Tumor Section
- of the American Association of Neurological Surgeons (AANS) and the Congress of
- 246 Neurological Surgeons (CNS) conducted a systematic review of the literature relevant to the
- 247 management of VSs. Additional details of the systematic review are provided below and within
- the introduction and methodology chapter of the guideline
- 249 (https://www.cns.org/guidelines/guidelines-management-patients-vestibular-
- 250 schwannoma/chapter_1).
- 251

252 Article Inclusion/Exclusion Criteria

- 253 One thousand three hundred and seven citations were manually reviewed by the team with
- 254 specific inclusion and exclusion criteria as outlined below. Three independent reviewers
- 255 reviewed and abstracted full-text data for each article, and the 2 sets of data were compared for
- agreement by a third party. Inconsistencies were re-reviewed, and disagreements were resolved
- by consensus. To be included in this guideline, an article has to be a study that:
- 258 General

259	 Investigated patients suspected of having VSs
260	• Was of humans
261	• Was not an in vitro study
262	Was not a biomechanical study
263	• Was not performed on cadavers
264	• Was published between January 1, 1990 and December 31, 2014
265	• Was published in a peer-reviewed journal
266	• Was not a meeting abstract, editorial, letter, or a commentary
267	• Was published in English
268	Included quantitatively presented results
269	Specific
270	• Used the 1995 AAO-HNS ²⁶ or GR hearing classification system ²⁹ or presented data
271	using a cut-off of \geq 50% word recognition score and \leq 50 dB pure tone average for
272	defining serviceable hearing or had individual patient data presented such that the
273	latter criteria could be applied and analyzed
274	• For patients receiving single fraction radiation therapy, a contemporary dose plan
275	using ≤ 13 Gy to the tumor margin ^{36,37}
276	• Included a median or mean follow-up of at least 2 years following treatment
277	• Included a minimum of 20 patients
278	• Studies focusing on NF2 or those reporting outcomes in sporadic and NF2-associated
279	tumors, without providing separate outcome data, were not included for review
280	
281	The authors did not include systematic reviews, guidelines, or meta-analyses conducted by other
282	authors. These documents were developed using different inclusion criteria than those specified
283	in this guideline. Therefore, they may have included studies that do not meet the inclusion
284	criteria stated above. The authors recalled these documents if their abstracts suggested that they
285	might address one of the recommendations presented here, and the bibliographies were searched
286	for additional studies.

287

288 Search Strategies

289 The task force collaborated with a medical librarian to search for articles published between

January 1, 1990 and December 31, 2014. Three electronic databases were searched: PubMed,

291 EMBASE, and Web of Science. Strategies for searching electronic databases were constructed

by the evidence-based clinical practice guideline task force members and the medical librarian

using previously published search strategies to identify relevant studies (Table 1; Figure 1).³⁸⁻⁴⁵

294

295 The authors supplemented searches of electronic databases with manual screening of the

bibliographies of all retrieved publications. The authors also searched the bibliographies of

297 recent systematic reviews and other review articles for potentially relevant citations. All articles

identified were subject to the study selection criteria listed above. As noted above, the guideline

299 committee also examined lists of included and excluded studies for errors and omissions. The

300 authors went to great lengths to obtain a complete set of relevant articles. Having a complete set

301 ensures that the guideline is not based on a biased subset of articles.

302

303 Data Analysis

304 Evidence tables for radiation treatment, microsurgery, and observation were constructed using 305 key study parameters as outlined above. In addition, the percentage of patients who maintained 306 useful hearing at time points between 1 and 10 years and who had serviceable hearing at baseline 307 was recorded according to data available in each study. "Serviceable hearing" or "useful 308 hearing" was defined by a word recognition score of \geq 50% and a pure tone average or speech 309 response threshold of ≤50 dB HL, which is equivalent to AAO-HNS class A-B and GR grade I-II.^{26,29} The aggregate data obtained from individual studies were summarized via a weighted 310 311 average to determine the overall percentage of patients with useful hearing at years 1 through 10 312 for each treatment modality. To accommodate a range of outcomes between studies, 4 ordinal 313 categories of probability were devised for the purpose of guideline formulation: "high 314 probability" of hearing preservation defined by >75% to 100%, "moderately high probability" 315 defined by >50% to 75%, "moderately low probability" defined by >25% to 50%, and "low 316 probability" defined by 0% to 25%.

317

318	Classification of Evidence and Guideline Formulation
319	The concept of linking evidence to recommendations has been further formalized by the American
320	Medical Association and many specialty societies, including the AANS, the CNS, and the American
321	Academy of Neurology. This formalization involves the designation of specific relationships
322	between the strength of evidence and the strength of recommendations to avoid ambiguity. In the
323	paradigm for prognostication used in this guideline, evidence is classified into 1 of 3 tiers based upon
324	the degree at which the study fulfills 5 technical criteria as outlined below:
325	• Was a well-defined representative sample of patients assembled at a common (usually
326	early) point in the course of their disease?
327	• Was patient follow-up sufficiently long and complete?
328	• Were objective outcome criteria applied in a "blinded" fashion?
329	• If subgroups with different prognoses were identified, was there adjustment for important
330	prognostic factors?
331	• If specific prognostic factors were identified, was there validation in an independent "test
332	set" group of patients?
333	
334	Class I evidence is used to support recommendations of the strongest type, defined as Level 1
335	recommendations, and require that all 5 technical criteria are satisfied. Class II evidence supports
336	intermediate strength recommendations, defined as level 2 recommendations, and require that 4
337	of the 5 technical criteria be met. Finally, Class III evidence supports level 3 recommendations,
338	comprising all remaining studies that satisfy 3 or less of the 5 technical criteria. A basis for these
339	guidelines can be viewed in Haines SJ and Nicholas JS (2006). Evidence-Based Medicine: A
340	Conceptual Framework. In Haines SJ and Walters BC (Eds.), Evidence-Based Neurosurgery: An
341	Introduction (Pages 1-17). New York: Thieme Medical Publishers.
342	RESULTS
574	

343 **RADIATION**

Question 1

What is the overall probability of maintaining serviceable hearing following single-

fraction radiation therapy, utilizing modern dose planning, at 2 years, 5 years, and 10 years following treatment?

Target population

These recommendations apply to all adults with sporadic vestibular schwannomas who have documented serviceable hearing in the ipsilateral ear prior to treatment and have received single-fraction stereotactic radiation using ≤ 13 Gy to the tumor margin.

Recommendation

Level 3: Individuals who meet these criteria and are considering stereotactic radiosurgery should be counseled that there is moderately high probability (>50% to 75%) of hearing preservation at 2 years, moderately high probability (>50% to 75%) of hearing preservation at 5 five years, and moderately low probability (>25% to 50%) of hearing preservation at 10 years.

344

Question 2

Among patients with AAO-HNS class A or GR grade I hearing at baseline, what is the overall probability of maintaining serviceable hearing following single-fraction radiation therapy, utilizing modern dose planning, at 2 years, 5 years, and 10 years following treatment?

Target population

These recommendations apply to adults with sporadic vestibular schwannomas who have documented AAO-HNS class A or GR grade I hearing in the ipsilateral ear prior to treatment and have received single-fraction stereotactic radiation using \leq 13 Gy to the tumor margin.

Recommendation

Level 3: Individuals who meet these criteria and are considering stereotactic radiosurgery should be counseled that there is a high probability (>75% to 100%) of hearing preservation at 2 years, moderately high probability (>50% to 75%) of hearing preservation at 5 years, and moderately low probability (>25% to 50%) of hearing preservation at 10 years.

Question 3

What patient- and tumor- related factors influence progression to nonserviceable hearing following single-fraction stereotactic radiation treatment using ≤ 13 Gy to the tumor margin?

Target population

These recommendations apply to adults with sporadic vestibular schwannomas who have serviceable hearing in the ipsilateral ear prior to treatment and have received single-fraction stereotactic radiation using ≤ 13 Gy to the tumor margin.

Recommendation

Level 3: Individuals who meet these criteria and are considering stereotactic radiosurgery should be counseled regarding the probability of successful hearing preservation based on the following prognostic data: the most consistent prognostic features associated with maintenance of serviceable hearing are good preoperative word recognition and/or pure tone thresholds with variable cut-points reported, smaller tumor size, marginal tumor dose ≤ 12 Gy, and cochlear dose ≤ 4 Gy. Age and sex are not strong predictors of hearing preservation outcome.

346 STUDY SELECTION

A total of 1307 studies were screened and assessed for eligibility, and 47 publications were included in the final review.⁴⁶⁻⁹² Specific to these recommendations, only studies evaluating single-fraction stereotactic radiation therapy using modern treatment paradigms, including a median dose of \leq 13 Gy to the tumor margin, with a minimum of 20 patients, and a median or mean of at least 2 years of follow-up are included. As a separate additional analysis, studies incorporating fractionated treatment strategies were also summarized (See *Additional Analysis* below).

354 STUDY CHARACTERISTICS

355 Data extraction included study design, class of evidence, primary treatment modality, total

356 number of patients, number of patients with pretreatment serviceable hearing, study selection

357 parameters, mean or median tumor size, mean or median follow-up, inclusion of NF2, inclusion

345

of recurrent VSs, percentage of patients with serviceable hearing between 1 and 10 years, and
 prognostic features associated with the development of nonserviceable hearing.

360 **RISK OF BIAS AND STUDY LIMITATIONS**

361 All selected publications were retrospective or nonrandomized prospective studies, and therefore 362 there is substantial risk of treatment selection bias. For example, some centers may be more 363 likely to observe small tumors in patients with good hearing, while others may consider upfront radiosurgery or microsurgery with an attempt at hearing preservation.⁹³⁻⁹⁷ Patients with tumors 364 larger than 1.5 to 2 cm in maximum posterior fossa dimension are not commonly considered 365 366 candidates for hearing preservation surgery given the low probability of success, even when 367 good preoperative hearing is present; however, such patients are generally included in radiosurgical series reporting hearing preservation outcomes.⁹⁸⁻¹⁰⁰ In addition, because most 368 369 studies only include a single treatment arm, our ability to isolate the effect of radiation on HL 370 from the natural history of progressive decline inherent to having a VS is difficult. Finally, an 371 attempt to control for variance in radiation planning parameters was made by limiting inclusion to only those publications primarily using a lower (≤ 13 Gy) marginal dose.^{36,37} Because of the 372 373 tremendous heterogeneity in fractionation schedules and dosing, studies analyzing the results of 374 fractionated radiation therapy were not included in the primary analysis, but are reported 375 separately.

376

377 RESULTS OF INDIVIDUAL STUDIES

The key results of individual studies are outlined in Table 2 and are summarized within the guideline recommendations. There were 4 publications that met study criteria and included both a radiation cohort and an observation control arm.^{62,65,69,92} These publications offer a special opportunity to examine the effects of radiation on HL over the natural history of audiometric decline and are discussed in this section. In addition, there are 2 studies with Class II evidence comparing radiosurgery and microsurgery; however, these studies will be specifically addressed in the final discussion when all 3 treatment modalities are collectively reviewed.^{71,75}

385

In 2010, Regis et al⁶⁹ presented a consecutive series of 47 patients with intracanalicular VSs who 386 387 were managed with conservative observation and 34 patients with intracanalicular tumors who 388 received proactive radiosurgery using a median dose of 12 Gy to the tumor margin. They found 389 that of the 31 patients with serviceable hearing at the time of observation commencement, 21 390 (68%) maintained useful hearing. When comparing the observation and radiosurgery groups 391 using Kaplan–Meier analysis at 3, 4, and 5 years, 75%, 52%, and 41% of patients in the 392 observation cohort maintained serviceable hearing, respectively. This is compared to 77%, 70%, 393 and 64% at the same time points for the cohort receiving upfront radiosurgery. The authors 394 concluded that proactive radiosurgery conferred a greater chance of hearing preservation than 395 observation. However, there are no statistical comparisons performed between groups that 396 strictly evaluated hearing preservation. In addition, in this study, the rate of tumor growth in the 397 observation group was over 4 times greater than was reported by other large studies, with 77% 398 demonstrating growth in just over 3 years. Furthermore, the authors do not explicitly define 399 tumor enlargement, other than "significant tumor growth."

400

In 2012, Rasmussen et al⁶² compared the outcomes of 42 patients who received fractionated 401 402 radiation therapy to a historical cohort of 409 control subjects who received observation and 403 were matched by initial hearing levels. They reported that at 2 years after radiation therapy, only 404 8 of an initial 21 (38%) patients with serviceable hearing maintained GR grade I or II hearing. 405 and at 10 years all had progressed to nonserviceable hearing. This is compared to 60% who maintained GR grade 1 hearing in the observation cohort. In addition, in contrast to Regis et al.⁶⁹ 406 407 only 12% demonstrated growth (>2 mm) during trial observation. Notably, however, in the study by Rasmussen et al.⁶² patients were only treated with radiation after tumor growth was detected 408 rather than receiving proactive treatment as reported by Regis et al⁶⁹ 409

410

411 In 2013, Breivik et al^{92} prospectively compared an observational cohort (n = 124) to a

412 radiosurgical arm (n = 113) receiving 12 Gy to the margin, and all 237 patients had tumors with

413 extracanalicular extension. At a mean follow-up of 55 months, 17 of 71 (24%) conservatively

414 managed patients with serviceable hearing at baseline maintained GR grade I or II hearing,

- 415 compared to 19 of 53 (36%) who received radiosurgery. It is notable that treatment was not
- 416 randomized, but followed an institutional algorithm. Based on this, the radiosurgery group

417 contained larger tumors at baseline, but otherwise there were no other important differences

- 418 between groups prior to treatment. The authors concluded that radiosurgery does not appear
- 419 protective, nor does it appear to accelerate HL compared to observation. It is critical to note that
- 420 Regis et al⁶⁹ only included intracanalicular tumors, while Breivik et al⁹² only analyzed tumors
- 421 with extracanalicular extension; the results of these 2 studies are therefore not freely comparable.422
- 423 In the remaining study, Kim et al^{65} evaluated a cohort of 41 patients with serviceable
- 424 pretreatment hearing who underwent radiosurgery and compared this to a historical cohort of 15
- 425 patients who were managed with observation. However, analyses comparing the radiosurgery
- 426 and observation cohorts were only made for 19 of the radiosurgery patients who experienced
- 427 acute hearing decline and received glucocorticoid therapy. For these reasons, the latter
- 428 comparative study is not discussed further in this section.
- 429

430 SYNTHESIS OF RESULTS

- 431 Class III evidence supports the conclusion that the risk of HL increases with time, well beyond
- 432 the first 2 years following radiation treatment. When evaluating all patients with serviceable
- 433 hearing at baseline, approximately 72% will maintain serviceable hearing at 2 years, 63% at 5
- 434 years, and 33% at 10 years. Currently, there are 2 studies with Class II evidence comparing
- 435 audiometric decline following radiosurgery to conservative management: 1 suggesting a
- 436 protective effect of radiation, and 1 supporting no significant difference between groups.^{69,92}

437 ADDITIONAL ANALYSIS

- 438 The collective results of fractionated radiation therapy for sporadic VSs were separately
- 439 analyzed. A total of 16 studies met study inclusion criteria and were
- 440 analyzed.^{46,47,49,50,53,55,57,62,64,67,73,80,82,83,91,101} Of these, 1 study compared fractionated radiation to
- 441 conservative observation. Lin et al¹⁰¹ reported the results of 16 patients who received
- 442 hyperfractionated radiation therapy, 113 who underwent microsurgery, and 86 who were initially
- 443 managed with conservative observation. However, only 11 patients within the radiation arm had
- serviceable hearing at baseline. For these reasons, the latter comparative study is not discussed
- 445 further in this section. Overall, the probability of maintaining serviceable hearing after
- 446 contemporary fractionated radiation therapy was 85% at 2 years and 72% at 5 years; however,

there was tremendous heterogeneity in the treatment parameters and a wide range of outcomes
between studies, making it impossible to draw any definitive conclusions regarding this
subgroup.

450 **DISCUSSION**

451 In reviewing the literature, there has been 1 recent large review in the VS literature evaluating hearing preservation following radiation therapy. In 2010, Yang et al¹⁰² identified 45 articles in 452 453 the literature, which summarized 4234 patients. They found that overall, 51% of patients with 454 serviceable hearing at baseline maintained useful hearing at a mean of 44 months following 455 radiation. However, when only including those who received a dose of ≤ 13 Gy to the margin, 456 60.5% maintained serviceable hearing. This is within 3% of the current study estimate for the 4-457 year time point. They found that size and age did not predict future development of 458 nonserviceable hearing; however, tumor dose to the margin was strongly associated with HL.

459 Yang et $al1^{02}$ did not provide time point estimates of hearing preservation in their study.

460 SUMMARY

461 The evidence for this guideline was primarily drawn from studies with Class III evidence and a 462 limited number with class II evidence; currently, no class I evidence exists to guide 463 recommendations on this topic. These data should be used when counseling patients regarding 464 the probability of long-term maintenance of serviceable hearing following contemporary low-465 dose radiation therapy for sporadic VSs. The risk of developing nonserviceable hearing is 466 cumulative over time, and at 10 years, less than half of patients who begin with serviceable 467 hearing will maintain useful hearing levels.

468

469 SURGERY

Question 4

What is the overall probability of maintaining serviceable hearing following microsurgical resection of small to medium-sized sporadic vestibular schwannomas early after surgery, at 2 years, at 5 years, and at 10 years following treatment?

Target population

These recommendations apply to adults with small to medium-sized (<2 cm) sporadic

vestibular schwannomas who have documented serviceable hearing in the ipsilateral ear prior to microsurgical resection via the middle cranial fossa or retrosigmoid approach.

Recommendation

Level 3: Individuals who meet these criteria and are considering microsurgical resection should be counseled that there is a moderately low probability (>25% to 50%) of hearing preservation immediately following surgery, moderately low probability (>25% to 50%) of hearing preservation at 2 years, moderately low probability (>25% to 50%) of hearing preservation at 5 years, and moderately low probability (>25% to 50%) of hearing preservation at 10 years.

470

471

Question 5

Among patients with AAO-HNS class A or GR grade I hearing at baseline, what is the overall probability of maintaining serviceable hearing following microsurgical resection of small to medium-sized sporadic vestibular schwannomas early after surgery, at 2 years, at 5 years, and at 10 years following treatment?

Target population

These recommendations apply to adults with small to medium-sized (<2 cm) sporadic vestibular schwannomas who have documented AAO-HNS class A or GR grade I hearing in the ipsilateral ear prior to microsurgical resection via the middle cranial fossa or retrosigmoid approach.

Recommendation

Level 3: Individuals who meet these criteria and are considering microsurgical resection should be counseled that there is a moderately high probability (>50% to 75%) of hearing preservation immediately following surgery, moderately high probability (>50% to 75%) of hearing preservation at 2 years, moderately high probability (>50% to 75%) of hearing preservation at 5 years, and moderately low probability (>25% to 50%) of hearing preservation at 10 years.

Question 6

What patient- and tumor-related factors influence progression to nonserviceable hearing following microsurgical resection of small to medium-sized sporadic vestibular schwannomas?

Target population

These recommendations apply to adults with small to medium-sized (<2 cm) sporadic vestibular schwannomas who have documented serviceable hearing in the ipsilateral ear prior to microsurgical resection via the middle cranial fossa or retrosigmoid approach.

Recommendation

Level 3: Individuals who meet these criteria and are considering microsurgical resection should be counseled regarding the probability of successful hearing preservation based on the following prognostic data: the most consistent prognostic features associated with maintenance of serviceable hearing are good preoperative word recognition and/or pure tone thresholds with variable cut-points reported, smaller tumor size commonly less than 1 cm, and presence of a distal internal auditory canal cerebrospinal fluid fundal cap. Age and sex are not strong predictors of hearing preservation outcome.

473

474 STUDY SELECTION

A total of 1307 studies were screened and assessed for eligibility, and 37 were included in the final review.^{71,75,103-136} Specific to this recommendation, only studies evaluating outcomes with the intent of hearing preservation using the middle cranial fossa or retrosigmoid/suboccipital craniotomy, with a minimum of 20 patients, and with a median or mean of at least 2 years of follow-up are included.

480 STUDY CHARACTERISTICS

481 Data extraction included study design, class of evidence, primary treatment modality, total
482 number of patients, number of patients with pretreatment serviceable hearing, study selection
483 parameters, mean or median tumor size, mean or median follow-up, inclusion of NF2, inclusion

484 of recurrent VSs, percentage of patients with serviceable hearing between 1 and 10 years, and
 485 prognostic features associated with the development of nonserviceable hearing.

486 **RISK OF BIAS AND STUDY LIMITATIONS**

487 Because all selected publications were either retrospective or nonrandomized prospective 488 studies, there is a substantial risk of treatment selection bias. Specific to microsurgery for hearing 489 preservation, commonly only ideal candidates, including those with good existing hearing and 490 small tumor size, are considered for hearing preservation. In addition, because most studies only include a single treatment arm, it is difficult to isolate the contribution of surgery to immediate 491 492 and delayed deterioration of hearing decline from the natural history of progressive decline 493 inherent to having a VS. Finally, hearing preservation outcome analysis is particularly 494 problematic for retrosigmoid craniotomy, because the intent of hearing preservation is not 495 always adequately outlined in the study. Specifically, some surgeons prefer the retrosigmoid 496 approach even in cases where hearing preservation is not attempted, such as for medium- or large-sized tumors.¹⁰ Tumor selection by approach also comes into play when comparing 497 498 retrosigmoid and middle fossa craniotomy. That is, medial tumors with greater cerebellopontine 499 angle extension are more commonly managed with the retrosigmoid approach, whereas smaller 500 lateral based tumors are more frequently selected for the middle fossa approach. Therefore, when 501 comparing outcomes, it is critical that the same size class is compared because size is one of the 502 primary predictors of hearing preservation outcome.

503 **RESULTS OF INDIVIDUAL STUDIES**

The key results of individual studies are outlined in Table 3, and are summarized within the guideline recommendations. There were 2 publications that met study criteria and included a microsurgical cohort and an observation control arm.^{101,115} These 2 publications offer a special opportunity to examine the effects of surgery on HL over the natural history of audiometric decline and are discussed in this section. In addition, there are 2 studies with class II evidence comparing radiosurgery and microsurgery; however, these studies will be specifically addressed in the final discussion when all 3 treatment modalities are reviewed.^{71,75}

511

512 In 2005, Grayeli et al¹¹⁵ compared the results of microsurgery and conservative observation in a 513 cohort of 416 unilateral VSs: 114 intracanalicular and 302 with \leq 15 mm in greatest cisternal 514 dimension. The 111 conservatively managed patients consisted of those over 60 years of age and 515 those who had contraindications or refused surgery. The mean follow-up was 33 months, and 516 47% demonstrated radiological growth of at least 2 mm. Of the 44 patients who presented with 517 serviceable hearing, 25 (57%) maintained AAO-HNS class A or B at last follow-up. The mean 518 follow-up in the microsurgery arm was 18 months. Initially, 183 patients had serviceable hearing 519 at baseline and of these, 145 underwent attempted hearing preservation via the middle fossa or 520 retrosigmoid approach. Of the latter, 45 (31%) maintained serviceable hearing at one year 521 following surgery. Longer follow-up in both groups would have been beneficial to determine if 522 serviceable hearing following surgery was durable, and to determine the rate of continued 523 decline in the observation cohort.

524

In 2005, Lin et al¹⁰¹ published a retrospective study comparing hearing preservation outcomes 525 526 consisting of a group of 16 patients who received hyperfractionated radiation therapy (50 Gy, 25 527 fractions over 5 weeks), 113 patients who received retrosigmoid craniotomy for hearing 528 preservation microsurgery, and 51 patients who were managed with conservative observation. 529 With the microsurgical arm, 30 (27%) had serviceable hearing in the immediate postoperative 530 period, and over a mean follow-up of 9.5 years, 18 (16%) maintained long-term useful hearing. 531 Of the patients managed with conservative observation, 22 of 51 (43%) maintained GR grade I-II 532 hearing at a mean follow-up of 6.8 years. Finally, only 1 of 11 (9%) patients who received 533 radiation therapy maintained serviceable hearing at a mean follow-up of 4 years. In this study, 534 the rate of initial hearing preservation following microsurgery for tumors <2 cm was relatively 535 low; however, it is notable that only 10% of patients progressed to nonserviceable hearing after a 536 follow-up of nearly 10 years if useful hearing was initially preserved. This is in contrast to the 537 higher percentage of decline that occurred in the radiation and observation cohorts over shorter 538 durations of follow-up.

539

To further highlight the difference in the pattern of HL after microsurgery compared to radiation therapy and observation, 4 additional studies reporting long-term follow-up are summarized here. In 2003, Chee, Nedzelski, and Rowed¹¹⁹ found that among patients who had serviceable hearing immediately following retrosigmoid tumor resection, 15 of 23 (65%) patients maintained useful hearing at a mean follow-up of 9.5 years following surgery. In 2010, Sughrue et al¹³⁷ 545 evaluated surgical outcomes in patients less than 40 years of age and found that if hearing was 546 initially preserved, no patients progressed to nonserviceable hearing in the operated ear even after 10 years of follow-up. In 2014, Quist et al¹³⁸ reported that 12 of 16 (75%) patients who had 547 hearing initially preserved following middle fossa tumor resection maintained AAO-HNS class 548 549 A or B hearing after 5 years of follow-up. As a limitation, 11 additional patients did not have 550 long-term audiometric data available and were excluded from the final analysis. In 2014, Yamakami et al¹⁰³ reported that 80% (12/15) of patients who initially had hearing preserved 551 552 following microsurgery maintained useful hearing at a median follow-up of 7 years. Similarly, 553 11 patients did not have long-term audiometric data reported. Thus, collectively, these data 554 demonstrate that if hearing can be successfully preserved immediately following surgery, 65-555 100% of patients maintain durable useful hearing long term.

556 SYNTHESIS OF RESULTS

557 Class III evidence supports the conclusion that the greatest risk to hearing with surgery occurs 558 upfront. If hearing is initially preserved following surgery, the results tend to be durable. This is 559 in contrast to conservative observation and radiation where the immediate risk is low, but 560 delayed or protracted loss of serviceable hearing is common.^{58,139} When evaluating all patients 561 with small to medium-sized (<2 cm) sporadic VS with serviceable hearing prior to surgery, and 562 including patients who lost useful hearing immediately following surgery, 47% will maintain 563 serviceable hearing at 2 years, 45% at 5 years, and 43% at 10 years.

564 **DISCUSSION**

565 In searching the literature, there have been several recent large reviews evaluating hearing preservation following microsurgical resection. In 2010, Sughrue et al¹⁴⁰ reported on the 998 566 567 patients from 49 articles who met inclusion criteria. Only patients with serviceable preoperative 568 hearing were included and an attempt to remove duplicate patient accounts was made. Overall, 569 286 patients underwent middle fossa craniotomy, and 702 patients underwent the retrosigmoid 570 approach. The percentage of patients with hearing preservation was 52% over a follow-up of 6 571 months to 7 years. On univariate analysis, the authors found that age greater than 60 years, 572 increasing tumor size, retrosigmoid approach, and gross total removal (vs. subtotal removal) 573 were associated with a greater risk of loss of serviceable hearing. On multivariate analysis, a 574 retrosigmoid approach (odds ratio = 4.2 [95% confidence interval = 2.0-8.8]; P < .001) and size >1.5 cm (odds ratio = 2.8 [95% confidence interval = 1.6–5.0], P < .001) were the only factors that remained statistically significant to predict loss of serviceable hearing. Unfortunately, data regarding change in hearing over follow-up was not described.

578

In 2012, Ansari et al¹⁴¹ published a literature review evaluating 5064 patients from 35 studies. 579 580 Inclusion criteria mandated that studies reported pre- and postoperative data using the AAO-HNS criteria (or its equivalent).¹⁴¹ However, "HL" included patients with less than AAO-HNS 581 582 class B hearing, a pure-tone average of greater than 50 dB HL, or a speech discrimination score 583 of less than 50%. When comparing outcomes between categorical tumor size groups of <1.5 cm. 584 1.5-3.0 cm, and >3 cm, the middle fossa approach demonstrated a 64% hearing preservation rate 585 for tumors <1.5 cm, compared to 44% for retrosigmoid craniotomy (P < .001). This study also 586 demonstrated that facial nerve outcomes were superior for intracanalicular tumors using the 587 retrosigmoid approach. The results of these studies are not contradictory with the findings of the 588 current systematic review. However, because many of the aforementioned reviews do not report 589 HL at individual time points, the results of these studies cannot be directly compared to the 590 current systematic review.

591 SUMMARY

592 The evidence for this guideline was primarily drawn from studies with class III evidence and a 593 limited number with class II evidence; currently, no class I evidence exists to guide 594 recommendations for this subject. These data should be used when counseling patients regarding 595 the probability of long-term maintenance of serviceable hearing following microsurgery for 596 sporadic VSs. The greatest risk to hearing occurs upfront with surgery. If serviceable hearing is 597 initially maintained, these results are generally durable. When including patients who lose useful 598 hearing immediately following surgery, at 10 years, less than half of patients who begin with 599 serviceable hearing will maintain useful hearing levels.

600 **OBSERVATION**

Question 7

What is the overall probability of maintaining serviceable hearing with conservative observation of vestibular schwannomas at 2 years, 5 years, and 10 years following diagnosis?

Target population

These recommendations apply to adults with small to medium-sized sporadic vestibular schwannomas who have documented serviceable hearing in the ipsilateral ear at time of diagnosis.

Recommendation

Level 3: Individuals who meet these criteria and are considering observation should be counseled that there is a high probability (>75% to 100%) of hearing preservation at 2 years, moderately high probability (>50% to 75%) of hearing preservation at 5 years, and moderately low probability (>25% to 50%) of hearing preservation at 10 years.

601

Question 8

Among patients with AAO-HNS class A or GR grade I hearing at baseline, what is the overall probability of maintaining serviceable hearing with conservative observation at 2 years and 5 years following diagnosis?

Target population

These recommendations apply to adults with small to medium-sized (<2 cm) sporadic vestibular schwannomas who have documented class A or GR grade I hearing in the ipsilateral ear at time of diagnosis.

Recommendation

Level 3: Individuals who meet these criteria and are considering stereotactic radiosurgery should be counseled that there is a high probability (>75% to 100%) of hearing preservation at 2 years, and moderately high probability (>50% to 75%) of hearing preservation at 5 years. Insufficient data were available to determine the probability of hearing preservation at 10 years for this population subset.

Question 9

What patient and tumor related factors influence progression to nonserviceable hearing during conservative observation?

Target population

These recommendations apply to adults with small to medium-sized (<2 cm) sporadic vestibular schwannomas who have documented serviceable hearing in the ipsilateral ear at time of diagnosis.

Recommendation

Level 3: Individuals who meet these criteria and are considering observation should be counseled regarding probability of successful hearing preservation based on the following prognostic data: the most consistent prognostic features associated with maintenance of serviceable hearing are good preoperative word recognition and/or pure tone thresholds with variable cut-points reported, as well as nongrowth of the tumor. Tumor size at the time of diagnosis, age, and sex do not predict future development of nonserviceable hearing during observation.

603 STUDY SELECTION

A total of 1307 studies were screened and assessed for eligibility, and 17 were included in the final review.^{2,19,62,69,92,114,139,142–151} Specific to this recommendation, only studies evaluating outcomes of hearing preservation following conservative observation with serial imaging, with a minimum of 20 patients, and with a median or mean of at least 2 years of follow-up are included.

608 STUDY CHARACTERISTICS

609 Data extraction included study design, class of evidence, primary treatment modality, total

610 number of patients, number of patients with serviceable hearing at time of observation

611 commencement, study selection parameters, mean or median tumor size, mean or median follow-

612 up, inclusion of NF2, inclusion of recurrent VSs, percentage of patients with serviceable hearing

613 between 1 and 10 years, and prognostic features associated with development of nonserviceable

614 hearing.

602

615 **RISK OF BIAS AND STUDY LIMITATIONS**

616 Because all selected publications were either retrospective or nonrandomized prospective 617 studies, there is a substantial risk of selection bias. Specific to conservative observation, this 618 population is frequently older and includes smaller tumors at the time of diagnosis than patients selected for microsurgery or radiation.¹⁵² In addition, the definition of tumor growth or "failed" 619 620 conservative management is extremely variable between studies. For example, some publications 621 report progression of symptoms, including hearing, to denote failure; others specify an increase 622 in tumor size or volume cutoff, most consistently ≥ 2 mm in greatest axial dimension compared to

initial imaging.^{69,150} 623

624 **RESULTS OF INDIVIDUAL STUDIES**

625 The key results of individual studies are outlined in Table 4 and are summarized within the 626 guideline recommendations. In addition to the studies discussed earlier comparing conservative 627 management to radiation therapy or microsurgery, several notable single-arm studies evaluating 628 conservative management have been reported. The most robust data evaluating long-term 629 hearing preservation with conservative observation comes from Copenhagen, Denmark, where a 630 single centralized unit has evaluated virtually all newly diagnosed VSs in the country for more 631 than 3 decades, and a substantial proportion of patients with tumors <2 cm are initially allocated to observation. In 2010, Stangerup et al¹⁹ evaluated the outcomes of 1144 patients who were 632 initially managed with conservative observation. Within this group, 377 patients had a minimum 633 634 of 5 years of follow-up, and 102 patients had at least 10 years. Overall, 249 of 455 (55%) 635 patients who presented with AAO-HNS class A or B hearing maintained serviceable hearing at 636 last follow-up, and when only evaluating those who presented with class A hearing, 81% (144/178 patients) maintained serviceable hearing at last follow-up. In 2008, Ferri et al¹⁴⁸ 637 638 reported the results of a prospective study where 123 patients with VSs were observed for a 639 mean follow-up of 4.8 years. Of 56 patients who initially presented with serviceable hearing, 41 640 (73%) maintained useful hearing at last follow-up. The remaining single-arm studies evaluating 641 conservative management had significantly fewer patients or shorter follow-up and will not be 642 individually discussed beyond the evidence table summary.

643 SYNTHESIS OF RESULTS

644 Class III evidence supports the conclusion that the risk of HL increases with time during 645 conservative management. Similar to radiation therapy, the development of nonserviceable 646 hearing is often protracted, continuing many years beyond diagnosis. When evaluating all 647 patients with small to medium-sized sporadic VSs with serviceable hearing at the initiation of an 648 observation period, 85% will maintain serviceable hearing at 2 years, 53% at 5 years, and 36% at 649 10 years. The 2 strongest prognostic factors for the development of nonserviceable hearing are 650 tumor growth and poorer hearing at the beginning of observation.

651 **DISCUSSION**

652 There were 2 literature reviews pertaining to VSs in the last 10 years that evaluated hearing preservation after conservative observation. In 2005, Smouha et al¹⁵³ performed a meta-analysis 653 literature review and evaluated a total of 21 studies comprising 1345 patients, with an average 654 length of follow-up of 3.2 years (range 2.2–5 years). Of 1244 patients with adequate data, 43% 655 demonstrated varying rates of growth.¹⁵³ Data regarding audiologic outcome was available in 656 347 patients. Within this cohort, hearing was "preserved" in 49% and "lost" in 51%. In this 657 658 study, rate of loss over time (ie, dB HL loss per year and SDS% loss per year) was not reported. In addition, data concerning hearing class were not described. In 2010, Sughrue et ^{al154} analyzed 659 660 the outcomes of 982 patients collected from 34 articles. Only publications that included patients 661 with serviceable hearing at presentation were included, and "hearing preservation" was defined 662 as having AAO-HNS class A-B or GR grade I-II at the end of follow-up. Over a range of follow-663 up between 26 and 52 months, the overall hearing preservation rate was 54%, which aligns with 664 estimates derived from the current systematic review. The authors found that slower growth rate $(\leq 2.5 \text{ mm/year})$ was associated with a greater probability of hearing preservation. 665

666 SUMMARY

667 The evidence for this guideline was primarily drawn from studies with class III evidence and a

- 668 limited number with class II evidence; currently no class I evidence exists to guide
- recommendations for this subject. These data should be used when counseling patients regarding
- 670 the probability of long-term maintenance of serviceable hearing during conservative
- 671 management of sporadic VSs. The risk of developing nonserviceable hearing is cumulative over

time, and at 10 years, less than half of patients who begin with serviceable hearing will maintainuseful hearing levels.

674 GENERAL DISCUSSION

675 The current systematic review seeks to analyze the risk of developing nonserviceable hearing in 676 patients who initially present with AAO-HNS class A or B or GR grade I or II hearing. The 677 impetus for developing this guideline was to provide a frame of reference to assist clinicians in 678 offering accurate and realistic counseling regarding the prospects of long-term serviceable 679 hearing by modality. This guideline demonstrates that in the long run, the majority of patients 680 develop nonuseful hearing in the ipsilateral ear either as a result of disease or as a consequence 681 of treatment. The risk of HL with surgery is upfront; if useful hearing is initially preserved 682 following surgery, the results appear to be durable in many cases, for at least 10 years. This is in 683 contrast to radiation and conservative observation, where the initial risk to hearing is low; 684 however, delayed loss is common and progressive over time. Therefore, in the short term, 685 patients are most likely to maintain useful hearing following conservative management or 686 contemporary low-dose radiation therapy. However, if progressive HL continues indefinitely in 687 the latter 2 groups, which could be reasonably inferred from the current data, then the very long-688 term advantage may favor microsurgery, provided that hearing is initially preserved in a healthy 689 proportion of patients undergoing surgery. Both the short- and long-term risks of HL should be 690 considered, because most patients with VSs are diagnosed in their 40s to 60s and are expected to 691 live several decades longer.

692

693 The remainder of the discussion primarily focuses on reviewing the only 2 studies offering class II evidence comparing radiosurgery and microsurgery,^{71,75} in addition to several recent literature 694 reviews.^{155–157} In 2006, Pollock et al⁷⁵ reported the first prospective, nonrandomized study 695 696 comparing outcomes between 36 patients who received microsurgery and 46 patients who 697 received radiosurgery. Preservation of serviceable hearing was greater for the radiosurgery arm 698 than the microsurgical group at 3 months (77% vs 5%, P < .001), 1 year (63% vs 5%, P < .001), 699 and last follow-up (63% vs 5%, P < 0001). A similar finding was reported when comparing the rate of AAO-HNS class A hearing between groups. Subsequently, in 2009, Myrseth et al⁷¹ 700 701 reported the second prospective, nonrandomized study comparing outcomes of 63 patients who

underwent Gamma Knife radiosurgery and 28 patients who underwent microsurgery. At both the
1- and 2-year time points, the Gamma Knife radiosurgery cohort had a statistically significantly
greater proportion of patients with hearing preservation compared to the microsurgery group. In
both studies, the Gamma Knife radiosurgery cohorts were older than the microsurgery groups;
however, there was no difference in baseline tumor size. In the study by Pollock et al,⁷⁵ the
retrosigmoid approach was used in 69% of cases, while the retrosigmoid approach was used
exclusively for patients who underwent microsurgery in the study by Myrseth et al⁷¹

In 2003, Yamakami et al¹⁵⁷ published a large review comparing outcomes following radiation 710 711 therapy (9 studies, 1475 patients), microsurgery (16 studies, 5005 patients), and conservative 712 observation (13 studies, 903 patients). In total, 57% of 271 patients who received radiation 713 treatment retained useful hearing following treatment, 36% of 1448 patients who underwent 714 microsurgical resection with intent of hearing preservation, and 63% of 60 patients who were 715 observed. Notably, a number of patients were treated with higher dose radiation parameters than 716 what are commonly used today (average marginal dose of 14.5 Gy), and a proportion of patients 717 underwent hearing preservation microsurgery despite having larger tumors.

718

In 2012, Maniakas and Saliba¹⁵⁶ published a review comparing the outcomes of radiosurgery and 719 720 conservative management in studies with a minimum of 5 years of follow-up. Reviewing 4 721 studies (147 patients) that met the inclusion criteria for conservative management, 58.5% of 722 subjects had preservation of useful hearing at an average of 7.75 years. This was compared to a 723 73.3% rate of useful hearing preservation in a sample size of 382 patients from 7 studies, 724 following stereotactic radiotherapy, after a mean follow-up of 6.4 years. Although this difference 725 reached strong statistical significance, the authors concluded that the current literature does not 726 provide enough evidence to make any definitive conclusions regarding differences in long-term 727 hearing preservation with conservative management or radiation. They emphasized that more 728 long-term studies, with homogenous data, are required. Notably, the results of this analysis 729 differed quite substantially for radiation therapy compared to other reviews, and the number of analyzed patients was small. In 2003, Shin et al¹⁵⁸ performed a literature review study evaluating 730 731 neurotologic complications after radiosurgery compared to conservative management. The 732 authors concluded that the probability of HL was much greater after radiosurgery (P < .05);

however, detailed descriptions of study methodology pertaining to hearing classification andoutcome were not presented.

735

This same year, Maniakas and Saliba¹⁵⁵ published a second literature review comparing long-736 737 term hearing and tumor control outcomes between microsurgery and radiation therapy for small 738 (<2 cm) VSs, requiring a minimum of 5 years of follow-up. Eight studies analyzing 410 cases 739 were included in the stereotactic radiation population. The mean duration of follow-up was 6.9 740 years and 70.2% of patients had a useful hearing preservation outcome. This is compared to 7 741 studies with 77 patients who underwent microsurgery, including 38 who received retrosigmoid 742 craniotomy and 39 who underwent middle fossa craniotomy. There was no statistical difference 743 between surgical approaches, and the overall hearing preservation rate of 50.3% was seen at an 744 average follow-up of 7.1 years. The authors concluded that stereotactic radiation therapy offered 745 a greater probability of durable hearing preservation compared to microsurgery (P < .001). In 2000, Kaylie et al¹⁵⁹ also performed a review comparing microsurgery and radiosurgery and 746 747 found that the prevalence of hearing preservation was identical between modalities. Specifically, 748 at a mean follow-up of 24 months, 44% of 599 patients who received microsurgery and 44% of 749 219 patients who received radiosurgery retained serviceable hearing following treatment. 750

751 In addition to the specific biases associated with individual treatment modalities, several general 752 limitations of the VS hearing preservation literature warrant review. Many studies only provide 753 the overall prevalence of hearing preservation at the median or mean study follow-up, and a 754 significant number fail to present estimates at separate time points using time-to-event analysis 755 (ie, Kaplan-Meier survival analysis), which is critical for interstudy comparison. Another 756 important general limitation is the frequent lack of information regarding length of audiometric 757 follow-up. In many studies, "follow-up" is marked by the most recent clinical evaluation or 758 magnetic resonance imaging study and not always the most recent audiometric time point. 759 Therefore, it is not always known whether a study reporting long-term outcomes is also 760 including long-term audiometric data, unless this is specifically detailed. A third common 761 limitation of the hearing preservation literature is the frequent lack of reported data concerning 762 HL in the contralateral ear, which becomes an important consideration with longer follow-up. 763 Age-related HL in the contralateral ear, particularly in the elderly, should be used to adjust rate

estimates of disease-associated audiometric decline. For example, if a patient develops a 35-db
HL loss in the tumor ear and a 15-dB HL loss in the nontumor ear over 15 years, only a loss of
20 dB in the tumor ear can be logically attributed to disease or treatment effects.

767

768 It is critical to realize that the current set of guidelines should not replace personal experience. In 769 the words of Michael E. Glasscock, III, we should not simply quote the literature when 770 counseling our patients regarding the rate of success or complication with surgery; but it is our 771 responsibility to track and know our own outcomes. The rate of HL with conservative 772 management is not dependent on the observer; however, the success of hearing preservation with 773 surgery is at least partly driven by the technical skill and experience of the surgical team, and 774 therefore may vary significantly between centers and surgeons. This point was highlighted by Mangham,¹⁶⁰ who after reviewing hearing preservation results between 11 centers with a 775 776 relatively high volume of VS microsurgery concluded that the surgical team accounted for more 777 variability in hearing preservation outcome than the surgical approach. This also holds true to 778 some extent with radiation therapy, where nuances of dose planning and cochlear shielding may influence long-term hearing preservation.⁴⁸ 779

780

781 Finally, we should not lose sight of the forest for the trees. Hearing preservation is only 1 of 782 many factors that should be considered when counseling patients regarding potential treatment 783 options. In addition, when considering the weighted impact of various disease- and treatment-784 related symptoms, other variables, including ongoing dizziness, headache, and facial paralysis, 785 may be more burdensome to the patient, provided that the contralateral ear has good hearing.^{152,161,162} Ultimately, patient characteristics including age, health status, tumor size, 786 787 hearing capacity (in both ears), occupational needs, and personal preference should all be 788 considered. When analyzing all newly diagnosed VSs, less than half present with serviceable hearing, and a smaller percentage are eligible for hearing preservation treatment strategies.¹⁶³ For 789 790 example, tumors >2.5 cm in maximum posterior fossa dimension are most commonly allocated 791 to surgery; however, in many centers, hearing preservation is not even attempted on a tumor this size even if useful hearing is present.¹⁰ 792

793 KEY ISSUES FOR FUTURE INVESTIGATION

32

794 In addition to understanding the pattern of HL within individual treatment modalities, high-795 quality comparisons of hearing preservation between modalities is of paramount concern. The 796 data acquired in the current systematic review demonstrates that many of the same features that 797 predict a favorable outcome with one modality also confer a good outcome with another. For 798 example, smaller tumor size, better hearing at baseline, and greater distance from the cochlea 799 (which is related to cochlear dose with radiation therapy and fundal fluid cap with microsurgery) 800 are associated with better outcomes whether managed by observation, surgery, or radiation. As a 801 result of the great variability in outcomes reported by single-arm publications, and the significant 802 selection biases present in nonrandomized multimodality studies, a well-designed prospective 803 randomized study is required to answer this question. To date, there are only 4 nonrandomized prospective studies comparing treatment modalities; currently, no Class I evidence exists.^{69,71,75,92} 804 805 Unfortunately, it is unlikely that a prospective randomized trial comparing outcomes between all 806 3 treatment modalities will ever materialize given a significant number of obstacles, including 807 patient recruitment in a relatively rare condition, the enrollment numbers required to detect 808 clinically meaningful differences, and significant practice disparities between many major 809 centers making multicenter collaborations difficult. Such barriers were encountered by Myrseth et al.⁷¹ who had to abandon an initial plan to randomize enrollment as patients were unwilling to 810 811 submit treatment allocation to chance. In addition, when examining long-term hearing 812 preservation outcomes, clinicians are chasing a moving target. By the time long-term data have 813 been acquired, the state of the field may have changed significantly from improvements in 814 surgical technique, intraoperative eighth nerve neuromonitoring, or radiation dose planning 815 paradigms.

816

817 Current mainstream strategies for treatment of single-sided deafness involve routing of sound to 818 the contralateral good ear, either surgically through bone conduction (eg, BAHA) or via a 819 hearing aid system (eg, CROS, BiCROS). While cochlear implants have been approved by the 820 US Food and Drug Administration for use in the United States since 1985 for bilateral advanced 821 sensorineural HL, it has been only recently that data have emerged regarding implantation in 822 patients with VSs and other "retrocochlear pathology." Several studies from within the last 823 decade have demonstrated relatively promising outcomes for patients with NF2 or sporadic VSs.^{164–166} In this setting, the cochlear nerve must be anatomically intact, and ideally, patients 824

825 should not have a prolonged duration of deafness. Compared to auditory brainstem implantation, cochlear implantation has a much greater probability of achieving open-set speech recognition.¹⁶⁴ 826 827 Currently, cochlear implantation is not approved by the US Food and Drug Administration for 828 single-sided deafness; therefore, insurance companies do not routinely cover implantation for 829 patients with VSs unless both ears have severe to profound sensorineural HL. As cochlear 830 implantation for single-sided deafness becomes more mainstreamed, it is likely that a greater 831 number of publications aimed at further defining the role of cochlear implantation in patients with sporadic VSs will be published.¹⁶⁷ 832

833

834 In recent years, there has been a trend toward maximizing functional outcomes, even at the expense of tumor control.^{17,168} Within the field of microsurgery, this has been clearly 835 836 demonstrated through the use of subtotal resection with or without planned postoperative radiation therapy to reduce risk of facial neuropathy for medium and large VSs.¹⁶⁹ While not 837 838 common in the United States, some centers also consider using subtotal resection in an attempt to preserve functional hearing in patients with larger tumors and good preoperative hearing.¹⁷⁰ 839 840 Paralleling the microsurgical literature, radiosurgery dose de-escalation, using a marginal dose of <13 Gy, has now become standard at most centers in the United States.^{81,171} In addition, 841 842 strategies aimed at minimizing radiation dose to the cochlea are now commonly used, which in 843 some cases may result in undertreatment of the lateral tumor margin in the fundus of the internal auditory canal.⁴⁸ The preliminary results of these strategies appear promising; however, long-844 845 term follow-up is required to determine durability of tumor control and long-term risk of HL as a 846 result of treatment or tumor recurrence.

847

848 A final key area of ongoing and future study is the use of medical therapy for prevention or 849 salvage of disease- or treatment-related hearing deterioration. Therapies including topical and 850 systemic calcium channel blockers (eg, nimodipine) and vasodilators (eg, Papaverine) might 851 demonstrate some utility as an adjunct for hearing preservation microsurgery, where vasospasm of labyrinthine vasculature has been proposed as a mechanism of HL.^{172–174} Glucocorticoid 852 853 therapy is frequently used perioperatively, but has also been applied to cases of sudden sensorineural HL with observed VSs and as an adjunct to radiation treatment.^{65,175} Recent studies 854 855 have demonstrated that aspirin use may have a protective effect against tumor growth in patients

856 with observed, sporadic VSs. Additional research will be needed to validate these findings and to

ascertain any benefit with regard to hearing preservation.¹⁷⁶ Finally, anti–vascular endothelial

growth factor therapy for patients with NF2 has demonstrated dramatic results in select

859 individuals.^{177,178} Future studies will be required to define the role of anti–vascular endothelial

- 860 growth factor therapy in mitigating HL with treatment or from natural tumor progression.
- 861

862 CONCLUSIONS

863 A systematic review of the existing evidence was performed to formulate a series of clinical 864 guidelines clarifying the probability of hearing preservation at different time points following 865 treatment and to elucidate the key prognostic features that predict hearing deterioration. These 866 data demonstrate that consistent and durable hearing preservation in sporadic VSs remains an 867 elusive goal. Most patients eventually develop nonserviceable hearing as a result of disease or 868 treatment. Class III and limited Class II evidence suggests that there is not one clear advantage of 869 one modality over another with regard to long-term hearing preservation. At 10 years following 870 treatment, more than half of patients with baseline serviceable hearing will progress to nonuseful 871 hearing levels regardless of treatment modality.

872

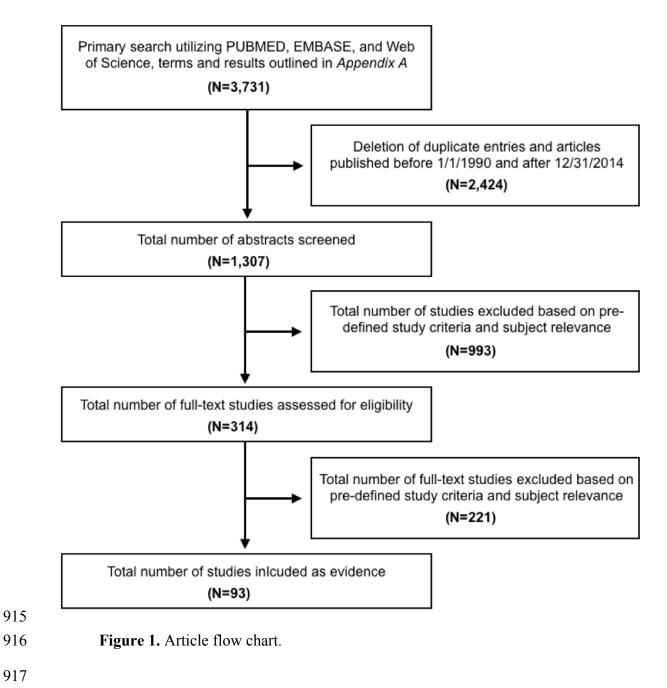
873 Conflict of Interest (COI)

874 The Vestibular Schwannoma Guidelines Task Force members were required to report all 875 possible COIs prior to beginning work on the guideline, using the COI disclosure form of the 876 AANS/CNS Joint Guidelines Committee, including potential COIs that are unrelated to the topic 877 of the guideline. The CNS Guidelines Committee and Guideline Task Force Chair reviewed the 878 disclosures and either approved or disapproved the nomination. The CNS Guidelines Committee 879 and Guideline Task Force Chair are given latitude to approve nominations of Task Force 880 members with possible conflicts and address this by restricting the writing and reviewing 881 privileges of that person to topics unrelated to the possible COIs. The conflict of interest findings 882 are provided in detail in the companion introduction and methods manuscript 883 (https://www.cns.org/guidelines/guidelines-management-patients-vestibular-884 schwannoma/chapter 1).

885

886 Disclaimer of Liability

- 887 This clinical systematic review and evidence-based guideline was developed by a
- 888 multidisciplinary physician volunteer task force and serves as an educational tool designed to
- provide an accurate review of the subject matter covered. These guidelines are disseminated with
- the understanding that the recommendations by the authors and consultants who have
- 891 collaborated in their development are not meant to replace the individualized care and treatment
- advice from a patient's physician(s). If medical advice or assistance is required, the services of a
- 893 competent physician should be sought. The proposals contained in these guidelines may not be
- suitable for use in all circumstances. The choice to implement any particular recommendation
- so contained in these guidelines must be made by a managing physician in light of the situation in
- each particular patient and on the basis of existing resources.


897 Disclosures

- 898 These evidence-based clinical practice guidelines were funded exclusively by the Congress of
- 899 Neurological Surgeons and the Tumor Section of the Congress of Neurological Surgeons and the
- 900 American Association of Neurological Surgeons, which received no funding from outside
- 901 commercial sources to support the development of this document.

902 Acknowledgments

- 903 The authors acknowledge the Congress of Neurological Surgeons Guidelines Committee for its 904 contributions throughout the development of the guideline and the American Association of 905 Neurological Surgeons/Congress of Neurological Surgeons Joint Guidelines Committee for its 906 review, comments, and suggestions throughout peer review, as well as Trish Rehring, MPH, 907 CHES, and Mary Bodach, MLIS, for their assistance. Throughout the review process, the 908 reviewers and authors were blinded from one another. At this time, the guidelines task force 909 would like to acknowledges the following individual peer reviewers for their contributions: 910 Sepideh Amin-Hanjani, MD, D. Ryan Ormond, MD, Andrew P. Carlson, MD, Kimon Bekelis, 911 MD, Stacey Quintero Wolfe, MD, Chad W. Washington, MD, Cheerag Dipakkumar Upadhyaya, 912 MD, and Mateo Ziu, MD.
- 913

914 FIGURES

918 **Table 1.** Primary search strategy, results, and initial pruning

ENDNOTE PUBMED (NLM), searched on May 9th 2015:

Search 1: All Fields, Contains "acoustic neuroma" AND All Fields, Contains "hearing preservation"

Results: 788

Search 2: All Fields, Contains "vestibular schwannoma" AND All Fields, Contains "hearing preservation"

Results: 434

Search 3: All Fields, Contains "acoustic neuroma" AND All Fields, Contains "audiometric"

Results: 164

Search 4: All Fields, Contains "vestibular schwannoma" AND All Fields, Contains "audiometric"

Results: 94

Search 5: All Fields, Contains "acoustic neuroma" AND All Fields, Contains "hearing" AND "predictors"

Results: 24

Search 6: All Fields, Contains "vestibular schwannoma" AND All Fields, Contains "hearing" AND "predictors"

Results: 21

Total: 1525

ENDNOTE EMBASE, searched on May 9th, 2015:

Search 1: Abstract, Contains "acoustic neuroma" AND Abstract, Contains "hearing preservation"

Results: 170

Search 2: Abstract, Contains "vestibular schwannoma" AND Abstract, Contains "hearing preservation"

Results: 221

Search 3: Abstract, Contains "acoustic neuroma" AND Abstract, Contains "audiometric"

Results: 59

Search 4: Abstract, Contains "vestibular schwannoma" AND Abstract, Contains "audiometric"

Results: 55

Search 5: Abstract, Contains "acoustic neuroma" AND Abstract, Contains "hearing" AND Abstract, Contains "predictors"

Results: 3

Search 6: Abstract, Contains "vestibular schwannoma" AND Abstract, Contains "hearing" AND Abstract, Contains "predictors"

Results: 16

Total: 524

ENDNOTE Web of Science, searched on May 9th, 2015:

Search 1: Title/Keywords/Abstract, Contains "acoustic neuroma" AND Title/Keywords/Abstract, Contains "hearing preservation"

Results: 785

Search 2: Title/Keywords/Abstract, Contains "vestibular schwannoma" AND Title/Keywords/Abstract, Contains "hearing preservation"

Results: 676

Search 3: Title/Keywords/Abstract, Contains "acoustic neuroma" AND Title/Keywords/Abstract, Contains "audiometric"

Results: 94

Search 4: Title/Keywords/Abstract, Contains, Contains "vestibular schwannoma" AND Title/Keywords/Abstract, Contains, Contains "audiometric"

Results: 68

Search 5: Title/Keywords/Abstract, Contains, Contains "acoustic neuroma" AND Title/Keywords/Abstract, Contains, Contains "hearing" AND Title/Keywords/Abstract, Contains, Contains "predictors"

Results: 27

Search 6: Title/Keywords/Abstract, Contains, Contains "vestibular schwannoma" AND Abstract, Contains "hearing" AND Title/Keywords/Abstract, Contains, Contains "predictors"

Results: 32

Total: 1682

Summary of Primary Search

Combined from 3 database searches, total of 3731 candidate articles Deleted articles published before 1/1/1990 and after 12/31/2014 Deleted all duplicate articles **Total number of candidate articles after primary search = 1307**

Table 2. Radiation therapy

Author/Year	Study Description	Data Class	Results and Conclusion
Puataweepong et al, 2014	Objective: To analyze VS treatment outcomes after SRS, HSRT, and CSRT using a LINAC-based system. Hearing preservation, complications, and tumor control were compared. Design: Retrospective case series extracted from a prospectively maintained database, single institutional experience	III	Results: Overall, 76% (10/13) of patients with pretreatment GR grade I hearing, and 83% (30/36) with GR grade II hearing maintained serviceable hearing. Overall hearing preservation rates at 1, 2, and 5 years were 90%, 84%, and 80% respectively. The 5-year hearing preservation rates after SRS, HSRT and CSRT were 75%, 87% and 63% respectively (P = .35).
	Number of patients: 139 patients in total, 39 treated with SRS, 79 with HSRT, and 28 with CSRT. At baseline 49 had serviceable hearing overall; 4 (10%) SRS patients had serviceable hearing at baseline, 33 (42%) treated with HSRT and 12 (43%) CSRT. Dose strategies variable within subgroups. Follow-up: Median 61 months.		Conclusion: There is no statistically significant difference in tumor control, hearing preservation, and complications following SRS, HSRT, and CSRT for VSs. The authors conclude that HSRT may be better than CSRT for patients with pretreatment serviceable hearing given the shorter treatment times.

Kranzinger et al, 2014	Objective: To evaluate HSRT for treatment of vestibular schwannomas with a focus on tumor control and hearing preservation Design: Prospective cohort using 7 × 4 Gy ICRU dose protocol, single institution experience Number of patients: 29 patients total, 23 with pretreatment serviceable hearing, 21 of the latter with serial posttreatment audiologic follow-up Follow-up: Median 71.3 months (audiometric follow- up).	Π	Results: The 5-year actuarial rate of hearing preservation was 50%. Patients with pretreatment speech discrimination score of 90–100% were much more likely to maintain serviceable hearing than those with lower scores ($P =$.002) Conclusion: Posttreatment tumor swelling is common. The rate of hearing decline following HSRT is only minimally greater than the natural history of VS-related hearing loss.
Jacob et al, 2014	 Objective: To evaluate association between volumetric cochlear dose and preservation of useable hearing after Gamma Knife radiosurgery. To assess intra- and interobserver reliability in determining modiolar point dose and to review clinical significance of cochlear dose with regard to SRS planning. Design: Retrospective case series, single institution experience Number of patients: 59 patients with pretreatment serviceable hearing Follow-up: Mean 25.2 months. 	III	Results: 21 (36%) developed nonserviceable hearing at a mean of 2.2 years following radiosurgery. Univariate predictors of nonserviceable hearing included pretreatment pure tone thresholds, speech discrimination scores, AAO-HNS hearing class, marginal dose, and mean dose to the cochlear volume. Multivariate analysis revealed that only pure tone thresholds were predictive after accounting for baseline differences. Conclusion: Cochlear dose is one of many variables associated with loss of serviceable hearing.

Tsai et al, 2013	Objective: To evaluate tumor control and hearing preservation following LINAC- based CyberKnife radiation therapy (marginal dose 18 Gy over 3 sessions, with a 72–90% isodose line) for VSs. To evaluate prognostic factors of hearing loss. Design: Retrospective case series, 2 separate medical centers. Number of patients: 117 total, 65 with pretreatment serviceable hearing Follow-up: Mean 64.5 months audiometric follow-up.	III	Results: 81.5% (53/65) maintained serviceable hearing at a mean follow-up of 64.5 months. Larger tumor volume and smaller cochlear volumes were associated with hearing loss after radiation therapy. Conclusion: LINAC-based CyberKnife treatment of vestibular schwannomas provides excellent tumor control and hearing preservation. Larger tumor size, poorer pretreatment hearing levels, and smaller cochlear volume are associated with poorer hearing preservation following radiation treatment.
Vivas et al, 2013	Objective: To evaluate hearing, tinnitus, balance, and tumor control outcomes after LINAC- based CyberKnife radiosurgery for VSs. Treatment plan included 18 Gy administered over 3 equal fractions to the 80% isodose line separated by at least 48 hours. Design: Retrospective case series, single institution Number of patients: 73 patients total, 28 with serviceable hearing prior to treatment Follow-up: Mean 40 months.	III	Results: Of patients with serviceable hearing before CyberKnife, 53.5% (15/28) maintained serviceable hearing at 3 years of follow-up. Of patients with pretreatment AAO-HNS Class A hearing, 77% (10/13) maintained serviceable hearing. Conclusion: LINAC-based CyberKnife provides similar rates of tumor control and hearing preservation compared to other forms of radiosurgery.

Breivik et al, 2013	Objective: To evaluate the effect of Gamma Knife radiosurgery on growth and hearing compared to conservatively managed vestibular schwannomas with extracanalicular extension Design: Prospective cohort study, single institution experience. Number of patients: 237 total, 113 receiving radiosurgery, 124 conservatively managed. 114 patients had serviceable hearing prior to radiosurgery. Follow-up: Mean 55 months.	Π	Results: Serviceable hearing was lost in 76% (54/71) of observed tumors and 64% (34/53) of tumors that received radiosurgery (not a statistically significant difference). Conclusion: Gamma Knife radiosurgery reduces the tumor growth rate compared to conservatively managed tumors. Hearing is lost at a similar rate between groups. Symptoms and quality of life are not different between groups.
Massager et al, 2013	Objective: To evaluate dose of radiation to the cochlea during Gamma Knife radiosurgery (marginal dose 12 Gy) for VSs and to determine associations between treatment variables and hearing preservation Design: Retrospective case series, single institution experience. Number of patients: 82 total, 60 with pretreatment serviceable hearing Follow-up: Median 2 years.	III	Results: 65% (39/60) of patients with serviceable hearing maintained serviceable hearing at last follow-up. Cochlear dose was strongly associated with hearing deterioration. Conclusion: Cochlear dose is strongly associated with hearing deterioration following Gamma Knife radiosurgery for VSs. At a median of 2 years following radiosurgery, 65% of patients will maintain serviceable hearing.

Lunsford et al, 2013	Objective: To evaluate tumor control, hearing preservation, and cranial nerve outcomes following Gamma Knife radiosurgery (median marginal dose 13 Gy) for treatment of VSs. Design: Retrospective case series, single institution experience. Number of patients: 829 total, number with pretreatment serviceable hearing not specified.	III	Results: The 5-year actuarial rates of hearing level preservation and speech discrimination preservation were 69% and 86%, respectively, for tumors that were treated with ≤13 Gy at the tumor margin. Conclusion: Gamma Knife radiosurgery provides low risk, effective treatment for VSs. Hearing preservation is possible in a large percentage of patients using modern dose planning.
Litre et al, 2013	 Follow-up: Not specified. Objective: To evaluate long- term outcomes of LINAC- based FRST (50.4 Gy) for VSs Design: Prospective cohort, single institution experience. Number of patients: 155 total, 61 with serviceable pretreatment hearing Follow-up: Median 60 months. 	II	Results: 54% (33/61) of patients with pretreatment serviceable hearing maintained serviceable hearing at last follow-up. Among patients with pretreatment GR grade I hearing, 63% maintained serviceable hearing at last follow- up. Conclusion: LINAC-based FSRT is safe and effective for treatment of vestibular schwannomas. Compared to radiosurgery, there are no contraindications to use, including patients with larger tumor size.

Kim et al, 2013	Objective: To evaluate prognostic factors for hearing preservation for sporadic intracanalicular VSs following Gamma Knife radiosurgery (mean marginal dose 12.2 Gy) Design: Not specified, but appears to be retrospective, single institution experience Number of patients: 60, all with serviceable hearing prior to radiosurgery Follow-up: Median 62 months.	III	Results: Actuarial hearing preservation rates at 1, 2, and 5 years following radiosurgery were 70%, 63%, and 55%, respectively. Transient posttreatment tumor expansion was the strongest predictor of hearing deterioration. Conclusion: Among patients with intracanalicular VSs, transient tumor expansion following radiosurgery is associated with an increased risk of hearing deterioration. At 5 years, 55% of patients with serviceable hearing before radiosurgery will maintain serviceable hearing.
Hayden Gephart et al, 2013	Objective: To analyze hearing preservation following LINAC- based CyberKnife radiosurgery (18 Gy, 3 equal fractions, median marginal dose to the 75–85% isodose line) for treatment of VSs. To analyze associations between cochlear radiation dose and hearing preservation. Design: Retrospective case series, single institution experience Number of patients: 94 patients with GR grade I or II before treatment Follow-up: Mean 2.4 years audiometric follow-up.	III	Results: Overall 74% (70/94) of patients with GR grade I or II maintain serviceable hearing at a mean of 2.4 years following CyberKnife radiosurgery. Higher radiation dose and larger irradiated cochlear volume were associated with hearing deterioration. Conclusion: Following CyberKnife radiosurgery, 74% of patients maintained serviceable hearing. Higher radiation dose and larger irradiated cochlear volume were significantly associated with risk of hearing loss.

Combs et al., 2013	Objective: To assess long-term tumor control, treatment toxicity, and hearing preservation following fractionated radiotherapy (median dose of 57.6 Gy, 1.8 Gy per fraction, 5 fractions per week, 90% isodose line) and radiosurgery (median marginal dose of 13 Gy to the 80% isodose) for treatment of VSs Design: Retrospective case series with cross-sectional survey assessing symptom control and quality of life, single institution experience Number of patients: 248 total; fractionated radiotherapy in 216 and radiosurgery in 32. 116 patients had pretreatment GR grade I or II Follow-up: Median 92 months.	III	Results: Among patients presenting with serviceable hearing prior to radiation treatment, the 1-, 3-, 5-, and 10- year rates of hearing preservation were 89.7%, 84.7%, 76.5%, and 68.6%, respectively. After 10 years of follow-up, hearing deterioration continued in both groups. Conclusion: Fractionated and single-fraction radiotherapy for VSs provide high rates of long- term tumor control with favorable rates of hearing preservation. The risk of hearing deterioration was not different between fractionated and single-fraction delivery when examining the SRS group that received ≤13 Gy to the tumor margin.
Champ et al, 2013	Objective: To report tumor control, functional outcome, and hearing preservation with reduced dose LINAC-based FSRT (total 46.8 Gy in 1.8-Gy fractions) Design: Retrospective case series, single institution experience. Number of patients: 154 total, 87 serviceable hearing prior to treatment Follow-up: Median 35 months.	III	Results: Cumulative rate of hearing preservation was 67% (58/87). When specifically analyzing the group with pretreatment GR grade I, the overall rate of hearing preservation was 82%. Univariate and multivariate analysis revealed that pretreatment hearing class and cochlear dose where strong predictors of hearing preservation following radiation treatment. Conclusion: Reduced dose FSRT provides excellent hearing preservation, tumor control, and limited toxicity.

Carlson et al, 2013	Objective: To describe the pattern and timing of hearing loss following Gamma Knife radiosurgery (12–13 Gy marginal dose) for VSs Design: Retrospective case series, single institution experience. Number of patients: 44 total, all with serviceable hearing prior to treatment and at least 5 years of audiometric follow-up Follow-up: Median 9.3 years.	III	Results: 18% (36/44) of patients maintained serviceable hearing at last follow-up. Kaplan–Meier estimates of nonserviceable hearing at 1, 3, 5, and 10 years following radiation were 80%, 55%, 48%, and 23%. Pretreatment tumor size and pretreatment pure tone average were strong predictors of hearing deterioration following radiosurgery on multivariable analysis. Conclusion: Durable hearing preservation a decade following stereotactic radiosurgery occurs in less than a quarter of patients. Pretreatment hearing capacity and tumor size predict development of nonserviceable hearing.
Baschnagel et al, 2013	Objective: To determine the rate of hearing preservation after Gamma Knife radiosurgery (median marginal dose of 12.5 Gy) for treatment of VSs. To determine the association between cochlear dose and development of nonserviceable treatment following radiation. Design: Retrospective case series, single institution experience. Number of patients: 40 patients, all with serviceable hearing prior to radiation therapy Follow-up: Median 35 months.	III	Results: The 1-, 3- and 5-year rates of hearing preservation following radiosurgery were 93%, 77%, and 74%, respectively. Cochlear dose and volume of cochlea irradiated were associated with development of nonserviceable hearing. Conclusion: A cochlear dose <3 Gy is associated with higher hearing preservation rates following Gamma Knife radiosurgery.

Yomo et al, 2012	Objective: To compare the rate of hearing loss during initial conservative observation to results after Gamma Knife radiosurgery (marginal dose 12.1 Gy) among patients with VSs. Design: Retrospective case series using within-subject control, single institution experience. Number of patients: 154 total, 105 with serviceable hearing prior to radiosurgery Follow-up: Mean 52 months following treatment.	III	Results: 58% of the patients with serviceable hearing prior to Gamma Knife radiosurgery retained serviceable hearing at the time of last follow-up Conclusion: The AHDR was less severe following radiosurgery than following the initial period of observation. Cochlear dose is a prognostic factor for development of nonserviceable hearing.
Sun et al, 2012	Objective: To assess long-term clinical outcomes following Gamma Knife radiosurgery (14 Gy or less to the margin) for treatment of sporadic VSs. Design: Retrospective case series, single institution experience. Number of patients: 190 total, but only 22 with serviceable hearing before treatment Follow-up: Median 109 months.	III	Results: 86% (19/22) of patients with pretreatment serviceable hearing maintained serviceable hearing following radiation. Conclusion: Using low-dose (≤14 Gy to the margin) Gamma Knife radiosurgery provides tumor control and minimal cranial nerve injury in sporadic VSs. Long-term follow-up is required because of the risk of delayed tumor recurrence.

Rasmussen et al, 2012	Objective: To evaluate long- term tumor control and hearing preservation using FRST (54 Gy in 27–30 fractions during 5.5–6.0 weeks) for VSs and to compare to an untreated control group. To assess the relationship between dose to the cochlea and rate of hearing preservation. Design: Retrospective case- control study, single institution experience. Number of patients: 42 total, 21 with pretreatment serviceable hearing; 409 historical controls Follow-up: Median 5 years.	Π	Results: 38% (8/21) of patients maintained serviceable hearing at 2 years following FRST, and none maintained serviceable hearing at 10 years. The hearing preservation rates in the control group were 1.8 times better than the treatment group at 2 years. Cochlear dose predicts deterioration of speech reception threshold. Conclusion: Fractionated stereotactic radiotherapy accelerates hearing loss over the natural history. Radiation dose to the cochlea predicts loss of hearing thresholds.
Han et al, 2012	Objective: To identify prognostic factors for hearing preservation among patients who undergo Gamma Knife radiosurgery (median marginal dose 12 Gy) for sporadic VSs. Design: Does not specify but appears to be a retrospective case series, single institution experience. Number of patients: 119, all with pretreatment serviceable hearing. Follow-up: Mean 55.2 months.	III	Results: In multivariate analysis, pretreatment pure tone average and ABR interlatency waves I–V were significant independent prognostic factors for hearing preservation. At last follow-up, 43% of patients lost serviceable hearing. The actuarial rates of hearing preservation at 12, 24, 36, and 60 months were 68.5%, 62.5%, 59.9%, and 56.2%, respectively, after radiosurgery. Conclusion: Pretreatment pure tone average score and ABR interlatency waves I–V were useful to predict hearing preservation with Gamma Knife radiosurgery.

Kopp et al, 2011	Objective: To assess tumor control- and treatment-related side effects of LINAC-based stereotactic radiosurgery (12 Gy to 100% isodose line) and fractionated radiotherapy (54 Gy at 1.8 Gy per fraction) for treatment of VSs. Design: Prospective nonrandomized cohort study, single institution experience. Number of patients: 115 total including 47 received stereotactic fractionated radiation and 68 received radiosurgery. 39 patients had serviceable hearing prior to radiosurgery and 33 had serviceable hearing prior to fractionated radiotherapy. Follow-up: Mean 32.1 months for fractionated cohort and 30.1 months for single-fraction cohort.	II	Results: At a mean of approximately 30 months following treatment, 85% of patients maintained serviceable hearing following radiosurgery, and 79% after stereotactic fractionated radiotherapy. Conclusion: High tumor control and a low rate of side effects occurred following fractionated and single-fraction stereotactic radiation for treatment of VSs.
Kim et al, 2011	 Objective: To evaluate efficacy of corticosteroids on acute hearing loss following Gamma Knife radiosurgery for VSs. To evaluate for prognostic factors for hearing preservation. Design: Prospective cohort with comparison to historical controls, single institution experience. Number of patients: 41, all with serviceable pretreatment hearing. Follow-up: Median 25 months. 	Ш	Results: 61% (25/41) of patients maintained serviceable hearing following radiation therapy. The actuarial hearing preservation was 75.2% at 1 year, 60.2% at 2 years, and 54.7% at 3 years. Conclusion: Steroid therapy may improve acute hearing loss following stereotactic radiosurgery for VSs.

Hasegawa et al, 2011	Objective: To evaluate hearing preservation rates and factors associated with hearing preservation following Gamma Knife radiosurgery (12 Gy median dose to the margin) for treatment of VSs Design: Retrospective case series, single institution experience. Number of patients: 117, all with pretreatment serviceable hearing. Follow-up: Median 38 months of audiometric follow-up.	III	Results: Actuarial 3-, 5-, and 8- year hearing preservation rates were 55%, 43%, and 34%, respectively. Actuarial 3- and 5- year hearing preservation rates were 71% and 64% in patients with pretreatment GR grade I hearing. Conclusion: Gamma Knife radiosurgery is an effective alternative to surgery for treatment of small to medium- sized VSs. Pretreatment hearing class and cochlear radiation dose are associated with hearing deterioration following radiation.
Hansasuta et al, 2011	Objective: To evaluate outcomes following fractionated stereotactic radiosurgery (CyberKnife, 18 Gy divided into 3 sessions) for treatment of VSs. Design: Retrospective case series, single institution experience. Number of patients: 383 total, 200 with pretreatment serviceable hearing. Follow-up: Median 3.0 years audiometric follow-up.	III	Results: Overall, 76% (151/200) of patients maintained serviceable hearing following treatment. Smaller tumor volume was associated with higher hearing preservation rates. Conclusion: CyberKnife radiosurgery (18 Gy; 3 sessions) provides excellent tumor control and promising hearing preservation rates, with minimal risk of facial and trigeminal nerve injury.

Collen et al, 2011	Objective: To evaluate and compare outcomes after LINAC-based stereotactic radiosurgery (median marginal dose of 12.5 Gy to the 80% isodose line) and fractionated radiotherapy (10 fractions of 3 to 4 Gy or 25 fractions of 2 Gy) for VSs Design: Retrospective case series, single institution experience. Number of patients: 119 total, including 78 with single fraction and 41 with fractionated radiation. 35 with single-fraction and 19 with fractionated radiation treatment had serviceable hearing prior to radiation. Follow-up: Median 62 months.	III	Results: Overall 4-year rate of preservation of serviceable hearing was 68%, 59% after single fraction, and 82% after fractionated treatment ($P = .089$). Overall, the 1-, 2- and 4-year hearing preservation rates were 87%, 81%, and 68%, respectively. Conclusion: LINAC-based radiotherapy provides good tumor control and clinical outcomes in small to medium-sized VSs. Treatment of larger tumors with radiation remains challenging.
Regis et al, 2010	Objective: To compare tumor control and hearing outcomes between patients receiving conservative management and upfront radiosurgery (marginal dose 12 Gy) for treatment of VSs. Design: Prospective cohort study, single institution experience. Number of patients: 47 receiving observation (31 with serviceable hearing) and 34 receiving radiosurgery, all had functional hearing. Follow-up: Median 34.7 months.	Π	Results: Serviceable hearing preservation in the observation group at 3, 4, and 5 years was 75%, 52%, and 41%, respectively. Serviceable hearing preservation in the radiosurgery group at 3, 4, and 5 years was 77%, 70%, and 64%, respectively Conclusion: Conservative treatment is associated with an increased risk of tumor growth and loss of serviceable hearing compared to upfront radiosurgery.

Tamura et al, 2009	Objective: To evaluate long- term hearing preservation after radiosurgery (median marginal dose 12 Gy) for patients with VSs and GR grade I hearing prior to treatment. Design: Not specified, but appears to be a retrospective, single institution experience. Number of patients: 74, all with GR grade I hearing before treatment. Follow-up: Median 48 months.	III	Results: Serviceable hearing was maintained in 70% of patients at 8 years and beyond. Factors associated with hearing preservation included initial symptoms, tumor size, dose to cochlea, age (cut point 50 years), and IAC depth of penetration Conclusion: Probability of serviceable hearing preservation following radiosurgery for VSs in patients with GR grade I hearing is high. Factors including age, initial symptoms, and dose to the cochlea predict risk of hearing loss.
Myrseth et al, 2009	Objective: To compare treatment-associated morbidity of radiosurgery (12 Gy to margin) and microsurgery for patients with VSs. Design: Prospective nonrandomized cohorts, single institution experience. Number of patients: 63 radiosurgery (25 with serviceable hearing), 28 microsurgery (13 with serviceable hearing) Follow-up: Mean 2 years.	Π	Results: No patients maintained serviceable hearing at 1 and 2 years after microsurgery, while 76% and 68% of patients maintained serviceable hearing at 1 and 2 years following radiosurgery. Conclusion: Better facial nerve outcomes and hearing outcomes are achieved with radiosurgery compared to microsurgery for VSs.

Lasak et al, 2008	Objective: To evaluate hearing outcomes for patients with unilateral VSs who received Gamma Knife radiosurgery (12-13 Gy to margin). To determine if cochlear dose affects hearing outcomes. Design: Retrospective case series, single institution experience. Number of patients: 33 total, 10 with pretreatment AAO-HNS class A or B hearing. Follow-up: Median audiometric follow-up of 24 months.	Π	Results: At last follow-up, 9 of 10 patients maintained serviceable hearing. Six of 10 with AAO- HNS class A or B retained their original hearing classification. Cochlear dose was associated with hearing loss. Conclusion: Pure tone average was significantly worse at 2 years following radiosurgery. Dose to the cochlea significantly affects hearing preservation outcomes.
Thomas et al, 2007	Objective: To determine hearing preservation rates and hearing preservation prognostic factors following FSRT (45 Gy in 25 fractions to the 90% isodose line) for VSs. Design: Prospective cohort study, single institution experience. Number of patients: 34 total, 33 with GR grade I or II hearing before treatment. Follow-up: 36.5 months.	III	Results: The 2- and 3-year actuarial rates of serviceable hearing preservation were both 63%. Radiation dose to the cochlea was the only significant predictor of hearing deterioration. Conclusion: Radiation dose to the cochlea is strongly predictive of hearing loss following FSRT for VSs.

Chopra et al, 2007	Objective: To evaluate long- term clinical outcomes of Gamma Knife radiosurgery (12-13 Gy marginal dose) for treatment of unilateral VSs. Design: Retrospective case series, single institution experience. Number of patients: 216 total, 106 with serviceable hearing prior to treatment. Follow-up: Median 68 months.	III	Results: 56.6% (60/106) of patients with serviceable hearing maintained serviceable hearing at last follow-up. The 10-year actuarial preservation rate was 44.5%. Treatment volume was the only variable associated with preservation of hearing class. Conclusion: Gamma Knife radiosurgery with 12–13 Gy to the tumor margin provides high rates of long-term tumor control and cranial nerve preservation.
Pollock et al, 2006	Objective: Comparison of tumor control and functional outcomes between patients receiving microsurgery and radiosurgery (mean dose to margin 12.2 Gy) for VSs. Design: Prospective nonrandomized cohort study, single institution experience. Number of patients: 82 total, 36 receiving microsurgery (22 with serviceable hearing before treatment), 46 receiving radiosurgery (30 with serviceable hearing before treatment) Follow-up: Mean 42 months.	Π	Results: Preservation of serviceable hearing at 1 year and last follow-up for the microsurgery cohort was 5% for both time points. Preservation of serviceable hearing at 1 year and last follow-up for radiosurgery was 63% for both time points (P < .01) Conclusion: Early outcomes are better for radiosurgery compared to microsurgery for <3 cm unilateral VSs.

Massager et al, 2006	Objective: To evaluate association between hearing preservation and volumetric and dosimetric parameters of radiosurgery (marginal dose 12 Gy) for treatment of VSs. Design: Retrospective case series, single institution experience. Number of patients: 82 total, 62 with serviceable hearing before treatment. Follow-up: Median 2 years.	III	Results: 65% (39/60) of patients with serviceable hearing before radiosurgery maintained serviceable hearing at last follow- up. Radiation dose to the cochlea and intracanalicular tumor volume are associated with hearing preservation following treatment. Conclusion: Advise direct treatment for patients with serviceable hearing and <100 mm ³ intracanalicular volume. For patients with larger intracanalicular volumes, dose reduction to the meatal tumor should be considered with movement of the maximum dose toward the extracanalicular portion of tumor.
Paek et al, 2005	Objective: To evaluate rate of hearing preservation and to determine prognostic factors following Gamma Knife radiosurgery (12 Gy to margin) for VSs. Design: Prospective cohort study, single institution experience. Number of patients: 25, all with serviceable hearing. Follow-up: Median 49 months.	III	Results: 52% (13/25) of patients maintained serviceable hearing following radiosurgery. 35% (9/25) retained their pretreatment GR hearing class. Maximum dose to the cochlear nucleus was the only factor associated with hearing deterioration. Conclusion: Improvements in radiation delivery are needed to prevent hearing deterioration in the first 6 months following radiation.

Hasegawa et al, 2005	Objective: To evaluate long- term outcomes using Gamma Knife radiosurgery for treatment of VSs (mean 13.2 Gy to the tumor margin). Design: Retrospective case series, single institution experience. Number of patients: 317, 90 with serviceable hearing before treatment and posttreatment audiometric follow-up. Follow-up: Median 7.8 years.	III	Results: The hearing preservation rate was 68% (50/74) in patients that received a marginal dose of ≤13 Gy. The rate of hearing preservation was significantly poorer in patients treated with higher dose plans. Conclusion: Radiosurgery provides safe and effective treatment and good functional outcomes for selected patients beyond 5 years of follow-up.
Combs et al, 2006	Objective: To evaluate the effectiveness and long-term outcome of stereotactic radiosurgery for VSs (median single marginal dose of 13 Gy, 80% isodose line). Design: Prospective cohort, single institution experience. Number of patients: 26 with serviceable hearing prior to treatment. Follow-up: Not specified.	III	Results: Hearing preservation rate for patients with useful hearing before radiation therapy was 55% at 9 years. Conclusion: Stereotactic radiosurgery results in good tumor control and low cranial nerve toxicities. Radiosurgery should be used with smaller lesions.

Combs et al, 2005	Objective: To evaluate long- term outcome and toxicity of FRST (median dose 57.6, median single fractions of 1.8 Gy, 5 per week) for treatment of VSs. Design: Prospective cohort, single institution experience. Number of patients: 106 total, 55 with serviceable hearing prior to treatment. Follow-up: Median 48.5 months.	III	Results: Actuarial hearing preservation in patients who presented with serviceable hearing was 98% at 2 and 5 years. Conclusion: Fractionated stereotactic radiotherapy is safe and efficacious for treatment of VSs, with mild toxicity with regard to hearing loss and cranial nerve function.
Flickinger et al, 2004	Objective: To define tumor control and clinical outcomes following Gamma Knife radiosurgery (12–13 Gy marginal dose) for VSs. Design: Retrospective review, single institution experience. Number of patients: 313 total, 246 had serviceable hearing prior to treatment. Follow-up: Median 24 months.	III	Results: Serviceable hearing was preserved in 79% (218/246) of patients. None of the variables tested correlated with decline in hearing level. Conclusion: Radiosurgery using 12–13 Gy to the tumor margin for treatment of VSs provides high rates of tumor control and good functional outcomes.

Chung et al, 2004	Objective: To determine tumor control, hearing preservation and toxicity rates using LINAC-based stereotactic radiation therapy. Design: Prospective cohort, single institution experience. Number of patients: 45 received single fraction (all functionally deaf), 27 received fractionated stereotactic radiation therapy (23 had serviceable hearing prior to radiation). Follow-up: Median 27 months.	III	Results: Among patients receiving FRST, the 1- and 2-year hearing preservation rate was 85% and 57%, respectively. Conclusion: Stereotactic radiotherapy provides good local tumor control and low toxicity. Fractionated treatment offers encouraging rates of hearing preservation.
Sawamura et al, 2003	Objective: To investigate outcomes of FRST (40–50 Gy in 20–25 fractions over 5–6 weeks) for VSs. Design: Not specified, but assume retrospective case series, single institution experience. Number of patients: 101 total. Follow-up: Median 45 months.	III	Results: 78% (28/36) with serviceable hearing before radiation therapy retained serviceable hearing at last follow- up. The actuarial 5-year rate of useful hearing preservation was 71%. Conclusion: FSRT resulted in excellent tumor control and high rates of hearing preservation. Progression to communicating hydrocephalus should be monitored closely, particularly in patients with large tumors.

Litvack et al, 2003	Objective: To evaluate tumor control and hearing preservation using Gamma Knife radiosurgery (12 Gy to margin) for treatment of VSs. Design: Retrospective case series, single institution experience. Number of patients: 134 total, 47 with serviceable hearing prior to surgery. Follow-up: Mean 26.3 months audiometric follow-up.	III	Results: 62% (29/47) maintained serviceable hearing at a mean of 26 months following radiosurgery. Conclusion: Patients with VSs <3 cm in maximum dimension should be given the option of radiosurgery as primary treatment.
Iwai et al, 2003	Objective: To report long-term outcomes following Gamma Knife radiosurgery using low dose (<12 Gy to margin) treatment. Design: Not specified, assume retrospective, single institution experience. Number of patients: 51 total, 18 with serviceable hearing prior to radiation. Follow-up: Median 60 months.	III	Results: Serviceable hearing was retained in 56% (10/18) of patients with pretreatment serviceable hearing levels. Conclusion: Low dose radiosurgery can achieve high rates of tumor control with good hearing preservation for patients with sporadic VSs

Regis et al, 2002	Objective: To compare outcomes following Gamma Knife radiosurgery (marginal dose of 14 Gy or less) and microsurgery for treatment of VSs. Design: Prospective cohort, single institution experience. Number of patients: 48 with serviceable hearing prior to radiosurgery. Follow-up: Not specified, but reported that all patients had at least 4 years of follow-up.	III	Results: 50% of patients with serviceable pretreatment hearing maintained serviceable hearing at last follow-up. 68% of patients with GR grade I hearing before radiosurgery maintained serviceable hearing at last follow- up. Conclusion: Findings after 4 years of follow-up indicate that radiosurgery provides better functional outcomes than microsurgery for VSs.
Petit et al, 2001	Objective: To evaluate tumor control and complications associated with low dose Gamma Knife radiosurgery (median 12 Gy to margin) for VSs. Design: Not defined, assume retrospective case series, single institution experience. Number of patients: 47 total, 26 with serviceable hearing prior to treatment. Follow-up: Median 3.6 years.	III	Results: Hearing decreased from GR grade I to III in 3 subjects and from grade III to V in 1 patient. All patients with GR grade I or II before treatment maintained GR grade I–III at follow-up. Conclusion: Low dose radiosurgery provides comparable tumor control and lower rates of other complications compared to prior publications.

Flickinger et al, 2001	Objective: To define tumor control and complications of Gamma Knife radiosurgery (median dose to margin 13 Gy) for treatment of VSs. Design: Retrospective case series, single institution experience. Number of patients: 190 total, 76 with serviceable hearing prior to radiation. Follow-up: Median 30 months.	III	Results: Serviceable hearing was preserved in 81% (61/75), with a 5-year actuarial preservation rate of 74%. Conclusion: Radiosurgery using the current procedures is associated with a high rate of tumor control and low morbidity.
Prasad et al, 2000	 Objective: To assess results of Gamma Knife radiosurgery (mean 13.2 Gy to margin) for treatment of VSs. Design: Not reported, assume retrospective case series, single institution experience. Number of patients: 153 total, 95 primary radiosurgery, 57 after prior microsurgery. 36 had serviceable hearing prior to radiosurgery. Follow-up: Mean 4.3 years. 	III	Results: 58% (21/36) of patients with serviceable pretreatment hearing maintained serviceable hearing following radiation. Conclusion: Radiosurgery should be used to treat postoperative residual tumor and in poor surgical candidates.

Unger et al, 1999	 Objective: To evaluate outcomes using Gamma Knife radiosurgery (12-14 Gy marginal dose) for treatment of VSs. Design: Not reported, assume retrospective case series, single institution experience. Number of patients: 192 total, 56 primary treatment. 46% (26/56) of patients had serviceable hearing prior to radiation. Follow-up: Median 62 months. 	III	Results: At 48 months of follow- up, 62% (16/26) of patients with serviceable hearing at time of diagnosis maintained serviceable hearing. Conclusion: Radiosurgery provides effective treatment for VSs and is associated with an exceptionally low mortality rate and a good quality of life.
Kagei et al, 1999	Objective: To assess efficacy and toxicity of small field fractionated radiotherapy with or without stereotactic boost (fractionated, 44 Gy in 22 fractions often with 4 Gy boost) for treatment of VSs Design: Not reported, assume retrospective case series, single institution experience. Number of patients: 39 total, 15 with serviceable hearing prior to treatment. Follow-up: Median 24 months.	III	Results: The actuarial preservation rates of serviceable hearing at 1 and 2 years were 86 and 78%, respectively. Conclusion: Fractionated radiation with or without stereotactic boost provides good short-term tumor control and low complications when treating VSs.

AAO-HNS, American Academy of Otolaryngology-Head and Neck Surgery; ABR, auditory
brainstem response; AHDR, annual hearing decline rate; FRST, fractionated stereotactic
radiotherapy; GR, Gardner-Robertson hearing classification; IAC, internal auditory canal;
LINAC, linear accelerator; VS, vestibular schwannoma.

Table 3. Surgery

Author/Year	Study Description	Data Class	Results and Conclusion
Yamakami et al, 2014	Objective: To report long-term functional outcomes following retrosigmoid craniotomy for resection of small (<1.5 cm) VSs. Design: Retrospective case series, single institution experience. Number of patients: 44 patients with AAO-HNS class A-C, 36 patients with AAO-HNS class A or B. Follow-up: Mean 5.1 years	III	Results: 16 of 19 (84%) patients with preoperative AAO-HNS class A hearing maintained serviceable hearing following surgery. 26 of 36 (72%) of patients with AAO-HNS class A or B hearing maintained serviceable hearing following surgery. At a mean of 5.1 years, 80% of patients who had successful hearing preservation maintained AAO-HNS class A or B hearing at last follow-up. Conclusion: Early resection of small VSs via retrosigmoid craniotomy provides cure and excellent functional outcomes.
Quist et al, 2014	Objective: To describe 5-year hearing preservation rates following middle fossa craniotomy for resection of VSs Design: Retrospective case series, single institution experience. Number of patients: 57 patients in total, 49 (86%) had preoperative serviceable hearing. Follow-up: Not specified. Subset of patients had 5 years of follow-up that was analyzed.	III	Results: Immediate postoperative hearing was preserved in 27 (55%). 5-year follow-up data were available in 16 of 27 patients. 12 of these 16 (75%) maintained serviceable hearing at 5 years. Conclusion: For patients who initially had hearing preserved following surgical resection of VSs, ~75% maintained serviceable hearing at 5 years.

Wang et al, 2013	Objective: To address hearing preservation following middle cranial fossa approach for resection of VSs. Specifically long-term durability of hearing was evaluated. Design: Retrospective case series, single institution experience. Number of patients: 103 total, 95 had pretreatment AAO-HNS class A or B hearing. Follow-up: Mean 4 years.	III	Results: Following surgery, 83% (65/78) of patients with preoperative class A hearing maintained serviceable hearing, while 82% (78/95) of patients with preoperative class A or B hearing maintained serviceable hearing in the early postoperative period. Overall, a decline in AAO-HNS classification was noted in 15% of patients with preserved Class A hearing and 33% of those with preserved class B hearing. Conclusion: Good hearing preservation and facial nerve outcomes can be achieved with the MCF approach for removal of small VSs. Durable hearing preservation is seen in most patients who initially have hearing preserved.
Vincent et al, 2012	 Objective: To analyze impact of patient selection and intraoperative 8th nerve monitoring on hearing preservation using middle fossa craniotomy for treatment of VSs. Design: Retrospective case series, single institution experience. Number of patients: 77 total, 73 with pretreatment serviceable hearing. Follow-up: Mean 8.5 years. 	III	Results: Before use of auditory monitoring and excluding patients with tumors involving the cochlear fossa, hearing preservation rates following surgery were 47%. Following improved patient selection and use of 8th nerve monitoring during surgery, hearing preservation improved to 75%. The overall rate of hearing preservation for the group was 63% (36/73). Conclusion: Use of 8th nerve monitoring and exclusion of patients with cochlear fossa enhancement results in improvement of hearing preservation following middle fossa craniotomy for resection of VSs.

Mazzoni et al, 2012	 Objective: To evaluate long- term hearing preservation results following retrosigmoid craniotomy for resection of VSs. Design: Retrospective case series, single institution experience. Number of patients: 200 total, 194 with preoperative serviceable hearing. Follow-up: Mean 14 years. 	III	Results: Among all patients with preoperative serviceable hearing, overall 28% (54/189) of patients maintained serviceable hearing in the short-term and 25% (47/188) in the long-term. 44% (39/89) of patients with pretreatment class A hearing maintained serviceable hearing in the short-term following surgery, and 40% (36/89) maintained serviceable hearing in the long-term. Conclusion: Using the retrosigmoid craniotomy for resection of VSs, 28% of patients with pretreatment serviceable hearing in the short-term and 25% in the long-term. Smaller tumor size and better pretreatment hearing level predict better hearing preservation outcomes.
Hilton et al, 2011	Objective: To assess long-term hearing preservation following middle cranial fossa resection of VSs. Design: Retrospective case series, single institution experience. Number of patients: 78. Follow-up: Mean 4 years.	III	Results: 65% (51/78) of patients with serviceable hearing before surgery maintained serviceable hearing immediately after surgery. Based on the 10-year Kaplan– Meier estimate, 72% of those who initially had hearing preserved after surgery maintained serviceable hearing. Conclusion: Delayed hearing loss following middle fossa craniotomy for resection of VSs is uncommon. Delayed loss of serviceable hearing may indicate tumor recurrence.

Di Maio et al, 2011	Objective: To report the rate of hearing preservation following microsurgical resection of large (>3 cm) VSs via retrosigmoid craniotomy. Design: Retrospective case series, single institution experience. Number of patients: 28 all with preoperative serviceable hearing. Follow-up: 31.3 months.	III	Results: Overall, 21% (6/28) maintained serviceable hearing following surgery. Of patients with preoperative GR grade I hearing, 38% (5/13) maintained serviceable hearing following surgery. Conclusion: Hearing preservation is possible for patients with large tumors and should be attempted in all patients with preoperative hearing. CSF fundal fluid and less tumor extending anterior to the porus acusticus are associated with hearing preservation.
Woodson et al, 2010	Objective: To evaluate long- term hearing outcomes following middle fossa craniotomy for resection of VSs. Design: Retrospective case series, single institution experience. Number of patients: 49. Follow-up: Mean 70.5 months.	III	Results: For subjects with >2 years of follow-up, hearing class is maintained in ~90% of patients. Conclusion: Most patients maintain their initial postoperative hearing levels following microsurgical removal of VSs.
Sughrue et al, 2010	Objective: To report the functional outcome and long- term tumor control after surgery in patients <40 years of age. Design: Retrospective case series, single institution experience. Number of patients: 204 total, 114 with serviceable hearing who had attempted hearing preservation. Follow-up: 10.2 years.	III	Results: The overall rate of hearing preservation for tumors <3 cm was 68% and the overall rate among tumors >3 cm was 44%. Kaplan– Meier analysis reveals that the immediate postoperative hearing test was stable over the course of follow-up. Conclusion: Surgery provides excellent long-term tumor control and functional outcomes.

Myrseth et al, 2009	Objective: To compare treatment associated morbidity of radiosurgery (12 Gy marginal dose) and microsurgery for patients with VSs. Design: Prospective, nonrandomized cohorts, single institution experience. Number of patients: 63 radiosurgery (25 with serviceable hearing), 28 microsurgery (13 with serviceable hearing). Follow-up: Mean 2 years.	Π	Results: No patients maintained serviceable hearing at 1 and 2 years following surgery, while 76% and 68% of patients maintained serviceable hearing at 1 and 2 years following radiosurgery. Conclusion: Better facial nerve outcomes and hearing outcomes are achieved with radiosurgery compared to microsurgery for VSs.
Gjuric et al, 2008	Objective: To analyze functional outcomes and to determine impact of tumor size on MCF outcomes for resection of VSs.	III	Results: Tumor size significantly predicts hearing preservation results. Specifically, the probability of hearing preservation in tumors >1.5 cm is <20%.
	Design: Retrospective case series, single institution experience.		Conclusion: Tumor size is the primary predictor of outcome for patients undergoing MCF approach for VS resection. For facial nerve
	Number of patients: 197 total, 61 with serviceable hearing prior to surgery.		outcome, a cutoff of 0.5-cm extracanalicular extension is critical. For hearing, the probability of hearing preservation is
	Follow-up: Not specified (2 months-5 years).		significantly reduced in tumors >1.5 cm.

Pollock et al, 2006	Objective: Comparison of tumor control and functional outcomes between patients receiving microsurgery (primarily retrosigmoid approach) and radiosurgery (mean dose to margin 12.2 Gy) for VSs. Design: Prospective, nonrandomized cohort study, single institution experience. Number of patients: 82 total, 36 receiving microsurgery (22 with serviceable hearing before treatment), 46 receiving radiosurgery (30 with serviceable hearing before treatment). Follow-up: Mean 42 months.	Π	Results: Preservation of serviceable hearing at 1 year and last follow-up for the microsurgery cohort was 5% for both time points. Preservation of serviceable hearing at 1 year and last follow-up for radiosurgery was 63% for both time points ($P < .01$). Conclusion: Early outcomes are better for radiosurgery when compared to microsurgery for <3 cm unilateral VSs.
Mohr et al, 2005	Objective: To examine the influence of preoperative tumor size, meatal filling and preoperative hearing levels on postoperative hearing preservation after retrosigmoid resection of VSs. Design: Not specified, assume retrospective case series, single institution experience. Number of patients: 128 total. Follow-up: Not specified.	III	Results: 24% of patients maintained serviceable hearing following retrosigmoid microsurgery. Tumor size and extent of meatal filling were associated with development of nonserviceable hearing, while pretreatment hearing level was not. Conclusion: Degree of internal auditory canal filling and tumor size are independent predictors of successful hearing preservation following microsurgery for VSs.

Lin et al, 2005	 Objective: Comparison of hearing preservation outcomes after treatment of VSs following HFSRT (50 Gy, 25 fractions over 5 weeks), microsurgery, and observation. Design: Retrospective case series, single institution experience. Number of patients: HFSRT 42 (11 had serviceable hearing before radiation), microsurgery 113 all with serviceable hearing before surgery, and observation 86 (51 with serviceable hearing at diagnosis). Follow-up: Mean follow-up HFSRT 4.0 years, microsurgery 9.5 years, and observation 6.8 years. 	III	Results: 9% (1/11) maintained serviceable hearing following HFSRT, 16% (18/113) following microsurgery, and 43% (22/51) following observation. Conclusion: Hearing decline was prevalent in all treatment groups. The decline was more significant following microsurgery and radiation compared to observation.
Grayeli et al, 2005	Objective: To compare conservative management with surgery for small unilateral VSs. Design: Retrospective case series, single institution experience. Number of patients: 44 with serviceable hearing receiving observation, 145 with serviceable hearing receiving surgery via MCF or retrosigmoid craniotomy. Follow-up: Mean 33 months.	III	Results: Among patients who had serviceable hearing at diagnosis and received conservative management of their VSs, 57% (25/44) maintained serviceable hearing at last follow-up. Among patients undergoing hearing preservation surgery, 31% (45/145) maintained serviceable hearing. There was no difference between middle fossa and retrosigmoid resection with regard to hearing preservation success. Conclusion: A high rate of hearing decline and loss of follow-up should be taken into consideration when evaluating hearing preservation strategies for patients with VSs.

Betchen et al, 2005	Objective: To determine the rate of long-term hearing preservation after retrosigmoid craniotomy for resection of VSs and to evaluate factors associated with hearing deterioration. Design: Retrospective case series, single institution experience. Number of patients: 142 total. Follow-up: Mean 7 years.	III	Results: 27% (38/142) had serviceable hearing preservation in the immediate postoperative period. Of these, 85.7% maintained serviceable hearing at a mean follow-up of 7 years. The results of hearing preservation were independent of tumor size. Conclusion: Long-term hearing preservation is maintained in 86% of patients who had hearing preserved in the immediate postoperative period. Hearing preservation is not influenced by tumor size.
Maw et al, 2003	 Objective: To assess hearing preservation in VSs using the retrosigmoid approach. Design: Prospective cohort, single institution experience. Number of patients: 33 with serviceable hearing prior to surgery. Follow-up: Median or mean not reported (range 6 months to 9 years). 	III	Results: 38% of patients with serviceable hearing prior to surgery retained serviceable hearing following surgery. Conclusion: Using appropriate surgical techniques and monitoring, it is possible to preserve serviceable hearing in approximately 50% of patients following retrosigmoid VS resection.

Friedman et al, 2003	Objective: To determine long- term hearing preservation following middle fossa craniotomy for resection of VSs Design: Retrospective case series, single institution experience Number of patients: 38 with serviceable hearing prior to surgery Follow-up: Median or mean not reported, follow-up time up to 11 years	III	Results: 61% of patients maintained serviceable hearing immediately following surgery. 70% of these retained serviceable hearing in the 5 years following surgery. Conclusion: More than two-thirds of patients will retain serviceable hearing at 5 years after initial successful middle fossa VS resection.
Chee et al, 2003	Objective: To evaluate long- term hearing preservation results following retrosigmoid craniotomy for VS resection. To identify variables associated with late audiometric decline. Design: Retrospective case series, single institution experience Number of patients: 126 total, 29 with serviceable hearing before surgery Follow-up: 113.4 months	III	Results: 34% (43/126) maintained serviceable hearing immediately following surgery. 76.6% of these patients maintained serviceable hearing in the early postoperative period, and 56.7% in the late postoperative period. Conclusion: Over time, a significant number of individuals experience greater decline in the operative ear than the non- operative ear.

Levo et al, 2002	Objective: To evaluate the rate and durability of hearing preservation surgery for VSs. To evaluate the perceived usefulness of preserved hearing. Design: Not defined, assume retrospective case series, single institution experience Number of patients: 98 with serviceable hearing prior to surgery and attempted hearing preservation Follow-up: Mean 7.3 years	III	Results: 20.4% (20/98) hearing preservation at a mean of 7.3 years postop. Age and preoperative speech discrimination were the strongest predictors of hearing preservation. Conclusion: Age and preoperative speech discrimination are the 2 most important predictors of hearing preservation. 66% of patients with hearing preserved rated their hearing as useful.
Lee et al, 2002	Objective: To evaluate the results of microsurgery for VSs utilizing the retrosigmoid approach Design: Retrospective case series, single institution review Number of patients: 160 total, 59 with serviceable hearing prior to surgery Follow-up: Mean 24 months	III	Results: 19% (11/59) of patients with preoperative serviceable hearing retained serviceable hearing at last follow-up. The probability of hearing preservation was greatest in smaller tumors (25%) compared to large tumors (0%). Conclusion: Surgical removal should be the standard management for VSs, particularly for medium and large tumors.

Kaylie et al, 2001	Objective: To report outcomes of VS surgery utilizing modern techniques and standardized grading. All hearing preservation attempts were via the retrosigmoid approach Design: Retrospective case series, single institution experience Number of patients: 97 total, 44 with serviceable hearing prior to surgery, and 37 underwent attempted hearing preservation; 27 of these had postoperative audiograms for comparison Follow-up: Mean 49 months	III	Results: 29% (8/27) of patients with serviceable hearing maintained serviceable hearing following surgery; 29% (7/24) of small tumors, and 33% (1/3) of medium sized tumors. Conclusion: VS surgery is safe and outcomes are good. Surgery remains the treatment of choice for most tumors.
Gjuric et al, 2001	Objective: To evaluate clinical outcomes following VS resection using the enlarged middle cranial fossa approach Design: Retrospective case series, single institution experience Number of patients: 735 total, 389 with serviceable hearing prior to surgery Follow-up: Not reported	III	Results: 45% (176/389) with preoperative serviceable hearing retained serviceable hearing following surgery. Among patients with preoperative AAO-HNS class A hearing, 53% (135/256) retained serviceable hearing following surgery. Conclusion: The expanded middle cranial fossa approach for VSs provides low morbidity, low risk of CSF leak, good internal auditory canal exposure and good hearing preservation for tumors <2 cm.

Kumon et al, 2000	Objective: To evaluate results of microsurgery for small VSs using the middle fossa and retrosigmoid approaches Design: Retrospective case series, single institution experience Number of patients: 53 total, 36 middle cranial fossa, 17 retrosigmoid; 40 total had serviceable hearing before surgery Follow-up: Mean 3.75 years	III	Results: Hearing was preserved in 68% (36/53) and it was serviceable in 51% (27/53). Of patients starting with serviceable hearing, 58% (23/40) maintained serviceable hearing at last follow-up. Of patients starting with AAO-HNS class A hearing, 57% (12/21) maintained serviceable hearing at last follow-up. Hearing levels tested 1 month following surgery had not deteriorated in any patient. Conclusion: Small (<2 cm) VSs should be surgically removed because of the high rate of hearing preservation and good facial nerve function. Tumors larger than 1 cm should be removed via retrosigmoid approach.
Ferber-Viart et al, 2000	Objective: To determine predictive factors of hearing preservation in patients treated with microsurgery for VSs Design: Prospective cohort, single institution experience Number of patients: 107 total (103 retrosigmoid, 4 middle fossa); 86 with serviceable hearing prior to surgery Follow-up: Not reported	III	Results: 55% (47/86) of patients with preoperative serviceable hearing maintained serviceable hearing following surgery. 60% (24/40) of patients with AAO-HNS class A hearing maintained class A hearing following surgery. Tumor size, preoperative hearing levels, presence of otoacoustic emissions, short duration of hearing loss, and presence of wave III on ABR were predictors of successful hearing preservation. Conclusion: 55% of patients with serviceable hearing will maintain serviceable hearing following surgery. Factors including ABR and OAE results, tumor size, preoperative hearing levels, and duration of hearing loss may predict hearing preservation after surgery.

Lustig et al, 1998	Objective: To evaluate the presentation and surgical outcome of patients with VSs who present with normal or symmetrical hearing Design: Retrospective case series, single institution experience Number of patients: 29, all with serviceable hearing at time of diagnosis; 21 underwent surgery, 14 retrosigmoid craniotomy, 5 middle fossa, 2 translabyrinthine Follow-up: Not reported	III	Results: 53% (10/19) of patients undergoing attempted hearing preservation maintained serviceable hearing following surgery. Conclusion: A small percentage of patients with VSs will present with normal audiometric findings. In this cohort, 53% maintained serviceable hearing following microsurgery with attempted hearing preservation
Kanzaki et al, 1997	Objective: To report outcomes following hearing preservation surgery using the middle fossa or extended middle fossa approach for VSs among patients presenting with normal hearing Design: Not reported, assume retrospective case series, single institution experience Number of patients: 28 with normal hearing before surgery, 53 with AAO-HNS class A, and 79 with serviceable hearing before surgery. Follow-up: Mean 4.8 years	III	Results: Serviceable hearing was maintained in 50% (14/28) of patients presenting with normal hearing before surgery, 47% (25/53) of patients with AAO-HNS class A hearing, and 37% (29/79) of patients presenting with serviceable hearing. Conclusion: Overall, hearing may be preserved in approximately half of patients presenting with AAO- HNS class A hearing and a third of patients receiving surgery and presenting with serviceable hearing

Gormley et al, 1997	Objective: To report outcomes following primarily retrosigmoid craniotomy for resection of VSs Design: Retrospective case series, single institution experience Number of patients: 179 total; 69 with serviceable hearing prior to surgery, 42 with <2 cm and serviceable hearing prior to surgery. Follow-up: Median 65 months	III	Results: 48% (20/42), 25% (6/24), and 0% (0/3) of patients with <2 cm, 2–4 cm, and >4 cm tumors, respectively, and preoperative serviceable hearing maintained serviceable hearing following surgery. The overall hearing preservation rate for all patients in whom hearing preservation was attempted was 38%. None of the patients who initially had hearing preservation experienced progression to nonserviceable hearing at last follow-up. Conclusion: Unless a patient has major medical problems, microsurgery by an experienced team of surgeons is preferred over radiosurgery. Overall, approximately 40% of patients with preoperative hearing maintain serviceable hearing following surgery. Late decline of hearing is uncommon.
Weber et al, 1996	Objective: To review surgical outcomes using the middle cranial fossa approach for VS resection Design: Retrospective case series, single institution experience Number of patients: 49, 34 with serviceable hearing prior to surgery Follow-up: Mean 4.8 years	III	Results: Of patients with serviceable hearing prior to surgery, 50% (17/34) retained these levels after surgery. Conclusion: 50% of patients with serviceable hearing before surgery will maintain serviceable hearing following microsurgery for small to medium-sized VSs using the middle cranial fossa approach.

Post et al, 1995	Objective: To report hearing preservation outcomes following retrosigmoid craniotomy for resection of VSs Design: Not reported, assume retrospective case series, single institution experience Number of patients: 56 total, 46 with serviceable hearing prior to surgery Follow-up: Mean 2.5 years	III	Results: 39% (18/46) of patients with serviceable hearing prior to surgery maintained serviceable hearing after surgery. Hearing preservation rates were better with smaller tumor size. Conclusion: Hearing preservation with retrosigmoid craniotomy is possible in 40–50% of patients. Smaller tumor size predicts increased probability of hearing preservation following surgery.
Pollock et al, 1995	Objective: To compare microsurgery and Gamma Knife radiosurgery (13-18 Gy marginal dose) for treatment of unilateral VSs. Design: Retrospective case series, single institution experience Number of patients: 87 total, microsurgery 40 (21 serviceable prior to treatment), radiosurgery 47 (8 serviceable prior to treatment). Follow-up: Median 36 months	III	Results: At a median audiological follow-up of 35 months, 14% (3/21) of patients who received surgery, and 75% (6/8) who received radiosurgery, maintained serviceable hearing following treatment. Conclusion: Compared to microsurgery, radiosurgery proved to be an effective and less costly management strategy for VSs <3 cm in size.

Dornhoffer et al, 1995	Objective: To assess hearing preservation outcomes following middle fossa for resection of VSs. Design: Retrospective case series, single institution experience Number of patients: 93, all with serviceable hearing Follow-up: Not reported	III	Results: Serviceable hearing was preserved in 58% (54/93) of patients who had serviceable hearing prior to surgery. Tumor size, preoperative vertigo, and ABR findings predicted postoperative hearing preservation, while preoperative hearing levels and ENG had no prognostic value. Conclusion: Hearing can be preserved in 58% of patients with <1.5 cm VSs using the middle fossa approach. Success rate of hearing preservation is related to tumor size.
Kanzaki et al, 1994	Objective: To evaluate hearing preservation rates following middle fossa and extended middle fossa craniotomy for VS resection Design: Not reported, assume retrospective case series, single institution experience Number of patients: 248 total, 42 with serviceable hearing and <2 cm tumor size prior to surgery Follow-up: Not reported	III	Results: 40% (17/42) of patients with serviceable hearing and a tumor <2 cm in size retained serviceable hearing following surgery. This is compared to 1 of 4 (25%) for tumors >2 cm. Postoperative hearing deteriorated within 1 month after surgery in 3 cases. In 2 cases, hearing deteriorated during long-term postoperative follow-up because of tumor recurrence. Conclusion: Serviceable hearing can be preserved in approximately 40% of patients after middle fossa or extended middle fossa surgery for VS resection. Hearing preservation rates are higher for smaller tumors.

Brooks et al, 1994	Objective: To review results of hearing preservation surgery for treatment of VSs using the retrosigmoid approach. To evaluate associations between clinical features and probability of successful hearing preservation. Design: Not reported, assume retrospective case series, single institution experience Number of patients: 24 total, 17 with serviceable hearing prior to surgery Follow-up: Not reported	III	Results: 53% (9/17) of patients with preoperative serviceable hearing maintained serviceable hearing after surgery. Tumor size and tumor extension to the fundus are adverse prognostic factors for successful hearing preservation. Conclusion: Potential hearing conservation should be considered a factor when determining best management of patients with small VSs.
Glasscock et al, 1993	Objective: To report the results of hearing preservation following retrosigmoid and middle fossa approaches for removal of VSs Design: Retrospective case series, single institution experience Number of patients: 136 total, 38 via middle fossa and 98 via retrosigmoid approach Follow-up: mean 6.5 years	III	Results: Serviceable hearing was retained in 35% (48/136) of cases with serviceable preoperative hearing levels. Preoperative ABR results were useful in predicting outcome of hearing preservation surgery. Conclusion: Serviceable hearing can be maintained in 35% of patients who present with serviceable hearing.

Goel et al, 1992	Objective: To report the late course of hearing preservation and tinnitus following retrosigmoid craniotomy for VSs. Design: Retrospective case series, single institution experience Number of patients: 42 Follow-up: Median 2.5 years	III	Results: 15 of 42 (36%) patients selected for hearing preservation attempt had GR grade I-III following surgery at a median follow-up of 2.5 years. Thirteen of 42 (31%) maintained serviceable hearing (GR grade I or II). Hearing preservation outcomes were better in patients with smaller tumors. Conclusion: Smaller tumor size is associated with better hearing preservation rates. Delayed hearing loss may occur in patients who initially have hearing preserved following VS surgery. A fraction of patients may experience hearing improvement following surgery.
Fischer et al, 1992	Objective: To report hearing preservation results following retrosigmoid craniotomy for resection of VSs and to identify predictors of outcome Design: Retrospective case series, single institution experience Number of patients: 99 Follow-up: Mean 5.2 years	III	Results: 22 patients had serviceable hearing before surgery and 12 (55%) maintained serviceable hearing following surgery at a median follow-up of 5.5 years. Tumor size, preoperative pure tone levels, and use of BAER were associated with better hearing preservation outcomes. Conclusion: Smaller tumor size and preoperative pure tone thresholds predict hearing preservation outcome. Use of BAER is associated with higher rates of hearing preservation.

AAO-HNS, American Academy of Otolaryngology-Head and Neck Surgery; ABR, auditory

929 brainstem response; BAER, brainstem auditory evoked response; CSF, cerebrospinal fluid; ENG,

930 electronystamography; GR, Gardner–Robertson hearing classification; HSRT, hypofractionated

931 stereotactic radiotherapy; OAE, otoacoustic emissions; VS, vestibular schwannoma.

Table 4. Observation

Author/Year	Study Description	Data Class	Results and Conclusion
Fayad et al, 2014	Objective: To evaluate long- term tumor control and hearing preservation among conservatively managed VSs Design: Retrospective case series, single institution experience Number of patients: 114 total patients, 32 with serviceable hearing at presentation Follow-up: Mean 4.8 years radiologic, mean 6.4 years any type of follow-up	III	Results: Of patients presenting with serviceable hearing, 59% (19/32) maintained serviceable hearing. Of patients with AAO- HNS Class A hearing at presentation, 86% (12/14) maintained serviceable hearing. Conclusion: Of patients electing initial observation, approximately 31% may eventually undergo further treatment.
Breivik et al, 2013	Objective: To evaluate the effect of Gamma Knife radiosurgery on growth and hearing compared to conservatively managed VSs with extracanalicular extension Design: Prospective cohort study, single institution experience Number of patients: 237 total; 113 receiving radiosurgery, 124 conservatively managed. 114 patients had serviceable hearing prior to radiosurgery. Follow-up: Mean 55 months	Π	Results: Serviceable hearing was lost in 76% (54/71) of patients with observed tumors and 64% (34/53) who received radiosurgery (not a statistically significant difference). Conclusion: Gamma Knife radiosurgery reduces the tumor growth rate compared to conservatively managed tumors. Hearing is lost at a similar rate between groups. Symptoms and quality of life are not different between groups.

Sughrue et al, 2011	Objective: To evaluate the natural history of hearing loss in a cohort of patients with conservatively managed VSs Design: Prospective cohort study, single institution experience Number of patients: 59 total, all with serviceable hearing at diagnosis Follow-up: Mean 5.3 years	Π	Results: The estimated median time to non-serviceable hearing ranged from 9.3-11.6 years for the three different tumor size groups. Growth rate (2.5mm/yr cut-point) was the strongest predictor of hearing loss. Initial tumor size and age did not affect time to serviceable hearing. Conclusion: Rapid tumor growth portends hearing loss. More than half of patients at 10 years, and more than 80% of patients at 20 years will acquire nonserviceable hearing during the course of conservative observation.
Pennings et al, 2011	Objective: To evaluate the natural course of hearing loss during conservative observation of intracanalicular VSs Design: Retrospective case series, single institution experience Number of patients: 47 total, 31 with serviceable hearing at diagnosis Follow-up: Mean 3.6 years	III	Results: 74% of subjects with serviceable hearing at time of diagnosis maintained serviceable hearing during the course of observation. Growth status or tumor location did not predict loss of serviceable hearing. Conclusion: Hearing will deteriorate in a percentage of patients with observed VSs, regardless of tumor growth. Hearing loss commonly occurs at the early part of observation.

Stangerup et al, 2010	Objective: Evaluate long-term hearing during "wait and scan" management of VSs Design: Retrospective case series, single institution experience Number of patients: 932 total, 455 with serviceable hearing at diagnosis Follow-up: Median or mean not specified	III	Results: 51% of patients with AAO-HNS class A hearing at diagnosis maintained class A hearing after the observation period. 81% of patients with AAO-HNS class A hearing at diagnosis maintained serviceable hearing at last follow-up. 55% of patients with serviceable hearing at time of diagnosis maintained serviceable hearing at last follow- up. Conclusion: Most patients with VSs presenting with 100% speech discrimination at diagnosis maintain good hearing after many years of observation.
Regis et al, 2010	Objective: To compare tumor control and hearing outcomes between patients receiving conservative management and upfront radiosurgery (marginal dose 12 Gy) for treatment of VSs Design: Prospective cohort study, single institution experience Number of patients: 47 receiving observation (31 with serviceable hearing) and 34 receiving radiosurgery, all had functional hearing Follow-up: Median 34.7 months	Π	Results: Serviceable hearing preservation in the observation group at 3, 4, and 5 years was 75%,52%, and 41%, respectively. Serviceable hearing preservation in the radiosurgery group at 3, 4, and 5 years was 77%, 70%, and 64%, respectively Conclusion: Conservative treatment is associated with an increased risk of tumor growth and loss of serviceable hearing compared to upfront radiosurgery

Stangerup et al, 2008	Objective: To evaluate hearing changes during observation of VSs Design: Retrospective case series, single institution experience Number of patients: 314 patients with serviceable hearing at diagnosis Follow-up: Mean 4.0 years	III	Results: For patients with AAO- HNS class A hearing at diagnosis, 74.4% maintained serviceable hearing at last follow-up. For patients with AAO-HNS class A or B hearing at diagnosis, 49% maintained serviceable hearing at last follow-up. Conclusion: After comparing hearing outcomes between microsurgery, radiation therapy, and observation, it appears that the main indication for treatment should be tumor growth and not proactive treatment for hearing preservation.
Ferri et al, 2008	Objective: To evaluate outcomes of conservative management for VSs Design: Prospective cohort study, single institution experience Number of patients: 123 total, 56 with serviceable hearing at diagnosis Follow-up: Mean 4.8 years	III	Results: During the course of observation, 73% (41/56) of patients maintained serviceable hearing at last follow-up regardless of tumor growth. Conclusion: Conservative management of VSs appears safe since most tumors do not grow, and surgical outcomes are not affected by possible delays. In most cases, useful hearing is maintained over time.

Quaranta et al, 2007	Objective: To evaluate change in hearing and tinnitus in a cohort of patients with unilateral VSs who were initially managed with conservative observation Design: Retrospective case series, single institution experience Number of patients: 70 total, 15 with serviceable hearing at diagnosis Follow-up: Mean 33 months	III	Results: 60% (9/15) of patients with serviceable hearing at diagnosis maintained serviceable hearing at last follow-up. Growth and tinnitus predicted hearing deterioration. Conclusion: The risk of losing eligibility for hearing preservation surgery was less than 30% after a mean follow-up of 33.3 months.
Caye- Thomasen et al, 2007	Objective: To report hearing preservation outcomes among patients with intracanalicular VSs managed with observation Design: Retrospective case series, single institution experience Number of patients: 156 total, 70 with serviceable hearing at diagnosis Follow-up: Mean 4.6 years	III	Results: The risk of significant hearing loss was 54% during 4.6 years of observation. Loss of pure tone average was smaller in shrinking tumors, and the rate of loss was higher in growing tumors. Conclusion: Volumetric growth is associated with hearing loss. The proportion of patients eligible for hearing preservation treatment was reduced to 28% during the course of observation.

Lin et al, 2005Objective: Comparison of hearing preservation outcomes after treatment of VSs following hyperfractionated stereotactic radiosurgery (50 Gy total in 25 fractions over 5 weeks), microsurgery, and observation.Design: Retrospective case series, single institution experienceNumber of patients: HFSRT 42 (11 had serviceable hearing before radiation), microsurgery 113, all with serviceable hearing before surgery, and observation, 86 (51 with serviceable hearing at diagnosis).Follow-up: Mean follow-up HFSRT 4.0 years, microsurgery 9.5 years, and observation 6.8 years	III	Results: 9% (1/11) maintained serviceable hearing following HFSRT, 16% (18/113) following microsurgery, and 43% (22/51) following observation. Conclusion: Hearing decline was prevalent in all treatment groups. The decline was most significant following microsurgery and radiation compared to observation.
---	-----	--

Grayeli et al, 2005	Objective: To compare conservative management with surgery for small unilateral VSs Design: Retrospective case series, single institution experience Number of patients: 44 with serviceable hearing receiving observation, 145 with serviceable hearing receiving surgery via middle cranial fossa or retrosigmoid craniotomy Follow-up: Mean 33 months	III	Results: Among patients who had serviceable hearing at diagnosis and received conservative management of their VSs, 57% (25/44) maintained serviceable hearing at last follow-up. Among patients undergoing hearing preservation surgery, 31% (45/145) maintained serviceable hearing. There was no difference between middle fossa and retrosigmoid resection with regard to hearing preservation. Conclusion: A high rate of hearing loss and loss of patient follow-up should be taken into consideration when evaluating hearing preservation strategies for patients with VSs.
Walsh et al, 2000	Objective: To determine the risk of hearing loss during conservative observation of VSs Design: Retrospective case series, single institution experience Number of patients: 25, 12 with serviceable hearing at diagnosis Follow-up: Mean 44 months	III	Results: 58% (7/12) of patients with serviceable hearing at diagnosis maintained serviceable hearing at last follow-up. 57% (4/7) with AAO-HNS class A hearing at diagnosis retained serviceable hearing at last follow- up. Conclusion: There is significant risk to lose serviceable hearing during conservative management of VSs. The risk is greatest in tumors demonstrating growth.

Massick et al, 2000	Objective: To prospectively evaluate correlation between tumor volume, growth, and hearing change in conservatively managed VSs Design: Prospective cohort, single institution experience Number of patients: 21 total, 14 with serviceable hearing at diagnosis, 8 non-NF2 with serviceable hearing at diagnosis Follow-up: Mean 3.8 years	III	Results: There is a significant correlation between change in tumor volume and changes in pure tone average and speech discrimination score. Of non-NF2 patients presenting with serviceable hearing, 50% maintained serviceable hearing after a mean of 4 years of follow- up. Conclusion: Volumetric growth predicts hearing deterioration during conservative management of VSs.
Charabi et al, 1995	Objective: Evaluate consequences of the "wait-and- see" approach to VS management Design: Prospective cohort, multicenter study Number of patients: 123 total, 37 with serviceable hearing at time of diagnosis Follow-up: Mean 3.4 years	III	Results: During the course of observation, 62% (23/37) developed nonserviceable hearing. Conclusion: Growth was observed in 74%, and loss of serviceable hearing was seen in 62% of patients during conservative management of VSs.

- 935 AAO-HNS, American Academy of Otolaryngology-Head and Neck Surgery; NF2,
- 936 neurofibromatosis 2; VS, vestibular schwannoma.

REFERENCES

- **1.** Ramsden RT. The bloody angle: 100 years of acoustic neuroma surgery. *J R Soc Med*
- 939 1995;88(8):464P-468P.
- **2.** Akard W, Tubbs RS, Seymour ZA, Hitselberger WE, Cohen-Gadol AA. Evolution of
- 942 techniques for the resection of vestibular schwannomas: from saving life to saving function. J
- *Neurosurg* 2009;110(4):642-647.

945	3. Cushing H. Tumors of the Nervus Acusticus and the Syndrome of the Cerbellopontile Angle.
946	Philadelphia (PA): W.B. Saunders; 1917.
947	
948	4. Dandy WE. Results of removal of acoustic tumors by unilateral approach. Arch Surg
949	1941;42:1026-1033.
950	
951	5. House WF. Transtemporal bone microsurgical removal of acoustic neuromas. Evolution of
952	transtemporal bone removal of acoustic tumors. Arch Otolaryngol 1964;80:731-742.
953	
954	6. Pulec JL, House WF. Transtemporal bone microsurgical removal of acoustic neuromas. Facial
955	nerve involvement and testing in acoustic neuromas. Arch Otolaryngol 1964;80:685-692.
956	
957	7. House HP, House WF. Transtemporal Bone microsurgical removal of acoustic neuromas.
958	historical review and problem of acoustic neuroma. Arch Otolaryngol 1964;80:601-604.
959	
960	8. House WF. Transtemporal bone microsurgical removal of acoustic neuromas. Report of cases.
961	Arch Otolaryngol 1964;80:617-667.
962	
963	9. House WF. Surgical exposure of the internal auditory canal and its contents through the
964	middle, cranial fossa. Laryngoscope 1961;71:1363-1385.
965	
966	10. Carlson ML, Link MJ, Wanna GB, Driscoll CL. Management of sporadic vestibular
967	schwannoma. Otolaryngol Clin North Am 2015;48(3):407-422.
968	
969	11. Ganz JC. Stockholm radiosurgery developing 1968-1982. Prog Brain Res 2014;215:85-94.
970	
971	12. Lasak JM, Gorecki JP. The history of stereotactic radiosurgery and radiotherapy. Otolaryngol
972	Clin North Am 2009;42(4):593-599.
973	
974	13. Leksell L. A note on the treatment of acoustic tumours. Acta Chir Scand 1971;137(8):763-
975	765.

\cap	_	1
u		ь
- 7		••

977	14. Delgado TE, Bucheit WA, Rosenholtz HR, Chrissian S. Intraoperative monitoring of facila
978	muscle evoked responses obtained by intracranial stimulation of the facila nerve: a more accurate
979	technique for facila nerve dissection. Neurosurgery 1979;4(5):418-421.
980	
981	15. Roberson J, Senne A, Brackmann D, Hitselberger WE, Saunders J. Direct cochlear nerve
982	action potentials as an aid to hearing preservation in middle fossa acoustic neuroma resection.
983	<i>Am J Otol</i> 1996;17(4):653-657.
984	
985	16. Strasnick B, Glasscock 3rd ME, Haynes D, McMenomey SO, Minor LB. The natural history
986	of untreated acoustic neuromas. Laryngoscope 1994;104(9):1115-1119.
987	
988	17. Carlson ML, Habermann EB, Wagie AE, et al. The changing landscape of vestibular
989	schwannoma management in the United States-a shift toward conservatism. Otolaryngology
990	head and neck surgery : official journal of American Academy of Otolaryngology-Head and
991	Neck Surgery 2015;153(3):440-446.
992	
993	18. Stangerup SE, Caye-Thomasen P. Epidemiology and natural history of vestibular
994	schwannomas. Otolaryng Clin N Am 2012;45(2):257-+.
995	
996	19. Stangerup SE, Thomsen J, Tos M, Caye-Thomasen P. Long-term hearing preservation in
997	vestibular schwannoma. Otol Neurotol 2010;31(2):271-275.
998	
999	20. Hanson H. Unilateral deafness a s, psychological, and existential aspects [thesis]. Stockholm,
1000	Sweden: University of Stolkholm, 1993.
1001	
1002	21. Wie OB, Pripp AH, Tvete O. Unilateral deafness in adults: effects on communication and
1003	social interaction. Ann Otol Rhinol Laryngol 2010;119(11):772-781.
1004	

1005	22. Tveiten OV, Carlson ML, Goplen F, Vassbotn F, Link MJ, Lund-Johansen M. Long-term
1006	Auditory symptoms in patients with sporadic vestibular schwannoma: an international cross-
1007	sectional study. Neurosurgery 2015;77(2):218-227.
1008	
1009	23. Han SJ, Oh MC, Sughrue ME, et al. The effect of the 2003 Consensus Reporting Standards
1010	on publications describing patients with vestibular schwannoma treated with stereotactic
1011	radiosurgery. J Clin Neurosci 2012;19(8):1144-1147.
1012	
1013	24. Han SJ, Oh MC, Sughrue ME, Aranda D, Rutkowski MJ, Parsa AT. Reporting standard
1014	compliance in publications of vestibular schwannoma patients treated with microsurgery. Otol
1015	Neurotol 2012;33(4):648-650.
1016	
1017	25. Bassim MK, Berliner KI, Fisher LM, Brackmann DE, Friedman RA. Radiation therapy for
1018	the treatment of vestibular schwannoma: a critical evaluation of the state of the literature. Otol
1019	Neurotol 2010;31(4):567-573.
1020	
1021	26. Committee on Hearing and Equilibrium guidelines for the evaluation of hearing preservation
1022	in acoustic neuroma (vestibular schwannoma). American Academy of Otolaryngology-Head and
1023	Neck Surgery Foundation, INC. Otolaryngol Head Neck Surg 1995;113(3):179-180.
1024	
1025	27. Kanzaki J, Tos M, Sanna M, Moffat DA, Monsell EM, Berliner KI. New and modified
1026	reporting systems from the consensus meeting on systems for reporting results in vestibular
1027	schwannoma. Otol Neurotol 2003;24(4):642-648.
1028	
1029	28. Gurgel RK, Jackler RK, Dobie RA, Popelka GR. A new standardized format for reporting
1030	hearing outcome in clinical trials. Otolaryngol Head Neck Surg 2012;147(5):803-807.
1031	
1032	29. Gardner G, Robertson JH. Hearing preservation in unilateral acoustic neuroma surgery. Ann
1033	<i>Otol Rhinol Laryngol</i> 1988;97(1):55-66.
1034	

1035	30. Woodson EA, Dempewolf RD, Gubbels SP, et al. Long-term hearing preservation after
1036	microsurgical excision of vestibular schwannoma. Otol Neurotol 2010;31(7):1144-1152.
1037	
1038	31. Shelton C, Brackmann DE, House WF, Hitselberger WE. Acoustic tumor surgery. Prognostic
1039	factors in hearing conversation. Arch Otolaryngol Head Neck Surg 1989;115(10):1213-1216.
1040	
1041	32. Jannetta PJ, Moller AR, Moller MB. Technique of hearing preservation in small acoustic
1042	neuromas. Ann Surg 1984;200(4):513-523.
1043	
1044	33. Silverstein H, McDaniel A, Norrell H, Haberkamp T. Hearing preservation after acoustic
1045	neuroma surgery with intraoperative direct eighth cranial nerve monitoring: Part II. A
1046	classification of results. Otolaryngol Head Neck Surg 1986;95(3 part 1):285-291.
1047	
1048	34. Samii M, Gerganov V, Samii A. Improved preservation of hearing and facial nerve function
1049	in vestibular schwannoma surgery via the retrosigmoid approach in a series of 200 patients. J
1050	Neurosurg 2006;105(4):527-535.
1051	
1052	35. Samii M, Matthies C. Management of 1000 vestibular schwannomas (acoustic neuromas):
1053	hearing function in 1000 tumor resections. Neurosurgery 1997;40(2):248-260.
1054	
1055	36. Niranjan A, Lunsford LD, Flickinger JC, Maitz A, Kondziolka D. Dose reduction improves
1056	hearing preservation rates after intracanalicular acoustic tumor radiosurgery. Neurosurgery
1057	1999;45(4):753-762.
1058	
1059	37. Chopra R, Kondziolka D, Niranjan A, Lunsford LD, Flickinger JC. Long-term follow-up of
1060	acoustic schwannoma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int J Radiat Oncol
1061	Biol Physics 2007;68(3):845-851.
1062	
1063	38. Kastner M, Wilczynski NL, Walker-Dilks C, McKibbon KA, Haynes B. Age-specific search
1064	strategies for Medline. J Med Internet Res 2006;8(4):e25.
1065	

1066	39. Haynes RB, McKibbon KA, Wilczynski NL, Walter SD, Werre SR, Hedges T. Optimal
1067	search strategies for retrieving scientifically strong studies of treatment from Medline: analytical
1068	survey. BMJ (Clinical research ed.) 2005;330(7501):1179.
1069	
1070	40. Montori VM, Wilczynski NL, Morgan D, Haynes RB, Hedges T. Optimal search strategies
1071	for retrieving systematic reviews from Medline: analytical survey. BMJ Clin Res Ed
1072	2005;330(7482):68.
1073	
1074	41. Wong SS, Wilczynski NL, Haynes RB. Comparison of top-performing search strategies for
1075	detecting clinically sound treatment studies and systematic reviews in MEDLINE and EMBASE.
1076	J Med Libr Assoc 2006;94(4):451-455.
1077	
1078	42. Zhang L, Ajiferuke I, Sampson M. Optimizing search strategies to identify randomized
1079	controlled trials in MEDLINE. BMC Med Res Methodol 2006;6:23.
1080	
1081	43. Topfer LA, Parada A, Menon D, Noorani H, Perras C, Serra-Prat M. Comparison of literature
1082	searches on quality and costs for health technology assessment using the MEDLINE and
1083	EMBASE databases. Int J Technol Assess Health Care 1999;15(2):297-303.
1084	
1085	44. Wilczynski NL, Haynes RB. Developing optimal search strategies for detecting clinically
1086	sound prognostic studies in MEDLINE: an analytic survey. BMC Med 2004;2:23.
1087	
1088	45. Wilczynski NL, Haynes RB, Hedges T. EMBASE search strategies achieved high sensitivity
1089	and specificity for retrieving methodologically sound systematic reviews. J Clin Epidemiol
1090	2007;60(1):29-33.
1091	
1092	46. Puataweepong P, Dhanachai M, Dangprasert S, et al. Linac-based stereotactic radiosurgery
1093	and fractionated stereotactic radiotherapy for vestibular schwannomas: comparative observations
1094	of 139 patients treated at a single institution. J Radiat Res 2014;55(2):351-358.
1095	

1096	47. Kranzinger M, Zehentmayr F, Fastner G, et al. Hypofractionated stereotactic radiotherapy of
1097	acoustic neuroma. Strahlenther Onkol 2014;190(9):798-805.
1098	
1099	48. Jacob JT, Carlson ML, Schiefer T, Pollock B, Driscoll C, Link M. Significance of cochlear
1100	dose in the radiosurgical treatment of vestibular schwannoma: controversies and unanswered
1101	questions. <i>Neurosurgery</i> 2014;74(5):466-474.
1102	
1103	49. Tsai JT, Lin JW, Lin CM, et al. Clinical evaluation of CyberKnife in the treatment of
1104	vestibular schwannomas. Biomed Res Int 2013;2013:297093.
1105	
1106	50. Vivas EX, Wegner R, Conley G, et al. Treatment outcomes in patients treated with
1107	CyberKnife radiosurgery for vestibular schwannoma. Otol Neurotol 2014;35(1):162-170.
1108	
1109	51. Massager N, Nissim O, Delbrouck C, et al. Irradiation of cochlear structures during
1110	vestibular schwannoma radiosurgery and associated hearing outcome. J Neurosurg 2013;119:82-
1111	88.
1112	
1113	52. Lunsford LD, Niranjan A, Flickinger JC, Maitz A, Kondziolka D. Radiosurgery of vestibular
1114	schwannomas: summary of experience in 829 cases. J Neurosurg 2013;119:24-28.
1115	
1116	53. Litre F, Rouzzeaux P, Jovenin N, et al. Fractionated stereotactic radiotherapy for acoustic
1117	neuromas: a prospective monocenter study of about 158 cases. Radiother Oncol
1118	2013;106(2):169-174.
1119	
1120	54. Kim YH, Kim DG, Han JH, et al. Hearing outcomes after stereotactic radiosurgery for
1121	unilateral intracanalicular vestibular schwannomas: implication of transient volume expansion.
1122	Int J Radiat Oncol Biol Phys 2013;85(1):61-67.
1123	
1124	55. Hayden Gephart MG, Hansasuta A, Balise RR, et al. Cochlea radiation dose correlates with
1125	hearing loss after stereotactic radiosurgery of vestibular schwannoma. World Neurosurg
1126	2013;80(3-4):359-363.

1128	56. Combs SE, Welzel T, Kessel K, et al. Hearing preservation after radiotherapy for vestibular
1129	schwannomas is comparable to hearing deterioration in healthy adults and is accompanied by
1130	local tumor control and a highly preserved quality of life (QOL) as patients' self-reported
1131	outcome. Radiother Oncol 2013;106(2):175-180.
1132	
1133	57. Champ CE, Shen X, Shi W, et al. Reduced-dose fractionated stereotactic radiotherapy for
1134	acoustic neuromas: maintenance of tumor control with improved hearing preservation.
1135	Neurosurgery 2013;73(3):489-496.
1136	
1137	58. Carlson ML, Jacob JT, Driscoll CL, et al. Long-term hearing outcomes following stereotactic
1138	radiosurgery for vestibular schwannoma. J Neurol Surg Part B Skull Base 2012;73:A253.
1139	
1140	59. Baschnagel AM, Chen PY, Bojrab D, et al. Hearing preservation in patients with vestibular
1141	schwannoma treated with Gamma Knife surgery. J Neurosurg 2013;118(3):571-578.
1142	
1143	60. Yomo S, Carron R, Thomassin JM, Roche PH, Regis J. Longitudinal analysis of hearing
1144	before and after radiosurgery for vestibular schwannoma. J Neurosurg 2012;117(5):877-885.
1145	
1146	61. Sun S, Liu A. Long-term follow-up studies of Gamma Knife surgery with a low margin dose
1147	for vestibular schwannoma. J Neurosurg 2012;117(suppl):57-62.
1148	
1149	62. Rasmussen R, Claesson M, Stangerup SE, et al. Fractionated stereotactic radiotherapy of
1150	vestibular schwannomas accelerates hearing loss. Int J Radiat Oncol 2012;83(5):E607-E611.
1151	
1152	63. Han JH, Kim DG, Chung HT, et al. Hearing preservation in patients with unilateral vestibular
1153	schwannoma who undergo stereotactic radiosurgery. Cancer 2012;118(21):5441-5447.
1154	
1155	64. Kopp C, Fauser C, Müller A, et al. Stereotactic fractionated radiotherapy and linac
1156	radiosurgery in the treatment of vestibular schwannoma-report about both stereotactic methods
1157	from a single institution. Int J Radiat Oncol 2011;80(5):1485-1491.

1159	65. Kim JW, Kim DG, Paek S, et al. Efficacy of corticosteroids in hearing preservation after
1160	radiosurgery for vestibular schwannoma: a prospective study. Stereot Funct Neurosurg
1161	2011;89(1):25-33.
1162	
1163	66. Hasegawa T, Kida Y, Kato T, Iizuka H, Yamamoto T. Factors associated with hearing
1164	preservation after Gamma Knife surgery for vestibular schwannomas in patients who retain
1165	serviceable hearing. J Neurosurg 2011;115(6):1078-1086.
1166	
1167	67. Hansasuta A, Choi CY, Gibbs IC, et al. Multisession stereotactic radiosurgery for vestibular
1168	schwannomas: single-institution experience with 383 cases. Neurosurgery 2011;69(6):1200-
1169	1209.
1170	
1171	68. Collen C, Ampe B, Gevaert T, et al. Single fraction versus fractionated linac-based
1172	stereotactic radiotherapy for vestibular schwannoma: a single-institution experience. Int J Radiat
1173	<i>Oncol</i> 2011;81(4):E503-E509.
1174	
1175	69. Régis J, Carron R, Park MC, et al. Wait-and-see strategy compared with proactive Gamma
1176	Knife surgery in patients with intracanalicular vestibular schwannomas. J Neurosurg
1177	2010;113(suppl):105-111.
1178	
1179	70. Tamura M, Carron R, Yomo S, et al. Hearing preservation after Gamma Knife radiosurgery
1180	for vestibular schwannomas presenting with high-level hearing. Neurosurgery 2009;64(2):289-
1181	296.
1182	
1183	71. Myrseth E, Møller P, Pedersen PH, Lund-Johansen M. Vestibular schwannoma: surgery or
1184	Gamma Knife radiosurgery? A prospective, nonrandomized study. Neurosurgery
1185	2009;64(4):654-661.
1186	

1187	72. Lasak JK, D, Kryzer, T, Hearn, C, Gorecki, J, Rine, G. Gamma knife radiosurgery for
1188	vestibular schwannoma: early hearing outcomes and evaluation of the cochlear dose. Otol
1189	Neurotol 2008;29(8):1179-1186.
1190	
1191	73. Thomas C, Di Maio S, Ma R, et al. Hearing preservation following fractionated stereotactic
1192	radiotherapy for vestibular schwannomas: prognostic implications of cochlear dose. J Neurosurg
1193	2007;107(5):917-926.
1194	
1195	74. Chopra R, Kondziolka D, Niranjan A, Lunsford LD, Flickinger JC. Long-term follow-up of
1196	acoustic schwannoma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int J Radiat Oncol
1197	2007;68(3):845-851.
1198	
1199	75. Pollock BE, Dirscoll CL, Foote RL, et al. Patient outcomes after vestibular schwannoma
1200	management: A prospective comparison of microsurgical resection and stereotactic radiosurgery.
1201	Neurosurgery 2006;59(1):77-83.
1202	
1203	76. Massager N, Nissim O, Delbrouck C, et al. Role of intracanalicular volumetric and
1204	dosimetric parameters on hearing preservation after vestibular schwannoma radiosurgery. Int J
1205	Radiat Oncol 2006;64(5):1331-1340.
1206	
1207	77. Paek SH, Chung HT, Jeong SS, et al. Hearing preservation after gamma knife stereotactic
1208	radiosurgery of vestibular schwannoma. Cancer 2005;104(3):580-590.
1209	
1210	78. Hasegawa T, Fujitani S, Katsumata S, Kida Y, Yoshimoto M, Koike J. Stereotactic
1211	radiosurgery for vestibular schwannomas: analysis of 317 patients followed more than 5 years.
1212	Neurosurgery 2005;57(2):257-263.
1213	
1214	79. Combs SE, Thilmann C, Debus J, Schulz-Ertner D. Long-term outcome of stereotactic
1215	radiosurgery (SRS) in patients with acoustic neuromas. Int J Radiat Oncol 2006;64(5):1341-
1216	1347.
1217	

1218	80. Combs SE, Volk S, Schulz-Ertner D, Huber PE, Thilmann C, Debus J. Management of
1219	acoustic neuromas with fractionated stereotactic radiotherapy (FSRT): long-term results in 106
1220	patients treated in a single institution. Int J Radiat Oncol 2005;63(1):75-81.
1221	
1222	81. Flickinger JC, Kondziolka D, Niranjan A, Maitz A, Voynov G, Lunsford LD. Acoustic
1223	neuroma radiosurgery with marginal tumor doses of 12 to 13 Gy. Int J Radiat Oncol
1224	2004;60(1):225-230.
1225	
1226	82. Chung HT, Ma R, Toyota B, Clark B, Robar J, McKenzie M. Audiologic and treatment
1227	outcomes after linear accelerator-based stereotactic irradiation for acoustic neuroma. Int J Radiat
1228	<i>Oncol</i> 2004;59(4):1116-1121.
1229	
1230	83. Sawamura Y, Shirato H, Sakamoto T, et al. Management of vestibular schwannoma by
1231	fractionated stereotactic radiotherapy and associated cerebrospinal fluid malabsorption. J
1232	Neurosurg 2003;99(4):685-692.
1233	
1234	84. Litvack ZN, Norén G, Chougule PB, Zheng Z. Preservation of functional hearing after
1235	gamma knife surgery for vestibular schwannoma. Neurosurg Focus 2003;14(5):e3.
1236	
1237	85. Iwai Y, Yamanaka K, Shiotani M, Uyama T. Radiosurgery for acoustic neuromas: results of
1238	low-dose treatment. Neurosurgery 2003;53(2):282-287.
1239	
1240	86. Régis J, Pellet W, Delsanti C, et al. Functional outcome after gamma knife surgery or
1241	microsurgery for vestibular schwannomas. J Neurosurg 2002;97(5):1091-1100.
1242	
1243	87. Petit JH, Hudes RS, Chen TT, Eisenberg HM, Simard JM, Chin LS. Reduced-dose
1244	radiosurgery for vestibular schwannomas. Neurosurgery 2001;49(6):1299-1306.
1245	
1246	88. Flickinger JC, Kondziolka D, Niranjan A, Lunsford LD. Results of acoustic neuroma
1247	radiosurgery: an analysis of 5 years' experience using current methods. J Neurosurg
1248	2001;94(1):1-6.

1249	
1250	89. Prasad D, Steiner M, Steiner L. Gamma surgery for vestibular schwannoma. J Neurosurg
1251	2000;92(5):745-759.
1252	
1253	90. Unger F, Walch C, Haselsberger K, et al. Radiosurgery of vestibular schwannomas: a
1254	minimally invasive alternative to microsurgery. Acta Neurochir 1999;141(12):1281-1286.
1255	
1256	91. Kagei K, Shirato H, Suzuki K, et al. Small-field fractionated radiotherapy with or without
1257	stereotactic boost for vestibular schwannoma. Radiother Oncol 1999;50(3):341-347.
1258	
1259	92. Breivik CN, Nilsen RM, Myrseth E, et al. Conservative management or gamma knife
1260	radiosurgery for vestibular schwannoma: tumor growth, symptoms, and quality of life.
1261	Neurosurgery 2013;73(1):48-56.
1262	
1263	93. Coucke P, Janvary ZL, Baart V, Devillers M, Jansen N, Lenaerts E. I beg your pardon? I can
1264	be treated by another modality than surgery for my vestibular schwannoma [in French]. Rev Med
1265	<i>Liege</i> 2011;66(10):521-528.
1266	
1267	94. Regis J, Carron R, Park MC, et al. Wait-and-see strategy compared with proactive Gamma
1268	Knife surgery in patients with intracanalicular vestibular schwannomas. J Neurosurg 2013;119
1269	Suppl:105-111.
1270	
1271	95. Brackmann DE, Fayad JN, Slattery 3rd WH, et al. Early proactive management of vestibular
1272	schwannomas in neurofibromatosis type 2. Neurosurgery 2001;49(2):274-280.
1273	
1274	96. Meyer TA, Canty PA, Wilkinson EP, Hansen MR, Rubinstein JT, Gantz BJ. Small acoustic
1275	neuromas: surgical outcomes versus observation or radiation. Otol Neurotol 2006;27(3):380-392.
1276	
1277	97. Stangerup SE, Thomsen J, Tos M, Caye-Thomasen P. Long-term hearing preservation in
1278	vestibular schwannoma. Otol Neurotol 2010;31(2):271-275.

1280	98. Yates PD, Jackler RK, Satar B, Pitts LH, Oghalai JS. Is it worthwhile to attempt hearing
1281	preservation in larger acoustic neuromas? Otol Neurotol 2003;24(3):460-464.
1282	
1283	99. Carlson ML, Jacob JT, Pollock BE, et al. Long-term hearing outcomes following stereotactic
1284	radiosurgery for vestibular schwannoma: patterns of hearing loss and variables influencing
1285	audiometric decline. J Neurosurg 2013;118(3):579-587.
1286	
1287	100. Milligan BD, Pollock BE, Foote RL, Link MJ. Long-term tumor control and cranial nerve
1288	outcomes following gamma knife surgery for larger-volume vestibular schwannomas. J
1289	Neurosurg 2012;116(3):598-604.
1290	
1291	101. Lin VY, Stewart C, Grebenyuk J, et al. Unilateral acoustic neuromas: long-term hearing
1292	results in patients managed with fractionated stereotactic radiotherapy, hearing preservation
1293	surgery, and expectantly. Laryngoscope 2005;115(2):292-296.
1294	
1295	102. Yang I, Sughrue ME, Han SJ, et al. A comprehensive analysis of hearing preservation after
1296	radiosurgery for vestibular schwannoma. J Neurosurg 2010;112(4):851-859.
1297	
1298	103. Yamakami I, Ito S, Higuchi Y. Retrosigmoid removal of small acoustic neuroma: curative
1299	tumor removal with preservation of function. J Neurosurg 2014;121(3):554-563.
1300	
1301	104. Quist TS, Givens DJ, Gurgel R, Chamoun R, Shelton C. Hearing preservation after middle
1302	fossa vestibular schwannoma removal: are the results durable? Otolaryngol Head Neck Surg
1303	2015;152(4):706-711.
1304	
1305	105. Wang AC, Chinn SB, Than KD, et al. Durability of hearing preservation after microsurgical
1306	treatment of vestibular schwannoma using the middle cranial fossa approach. J Neurosurg
1307	2013;119(1):131-138.

1309	106. Vincent C, Bonne NX, Guerin C, et al. Middle fossa approach for resection of vestibular
1310	schwannoma: impact of cochlear fossa extension and auditory monitoring on hearing
1311	preservation. Otol Neurotol 2012;33(5):849-852.
1312	
1313	107. Mazzoni A, Zanoletti E, Calabrese V. Hearing preservation surgery in acoustic neuroma:
1314	long-term results. Acta Otorhinolaryngol Ital 2012;32(2):98-102.
1315	
1316	108. Hilton CW, Haines SJ, Agrawal A, Levine SC. Late failure rate of hearing preservation
1317	after middle fossa approach for resection of vestibular schwannoma. Otol Neurotol
1318	2011;32(1):132-135.
1319	
1320	109. Di Maio S, Malebranche AD, Westerberg B, Akagami R. Hearing preservation after
1321	microsurgical resection of large vestibular schwannomas. Neurosurgery 2011;68(3):632-640.
1322	
1323	110. Woodson EA, Dempewolf RD, Gubbels SP, et al. Long-term hearing preservation after
1324	microsurgical excision of vestibular schwannoma. Otol Neurotol 2010;31(7):1144-1152.
1325	
1326	111. Sughrue ME, Kaur R, Rutkowski M, et al. A critical evaluation of vestibular schwannoma
1327	surgery for patients younger than 40 years of age. Neurosurgery 2010;67(6):1646-1653.
1328	
1329	112. Gjuric M, Rudic M. What is the best tumor size to achieve optimal functional results in
1330	vestibular schwannoma surgery? Skull Base 2008;18(5):317-325.
1331	
1332	113. Mohr G, Sade B, Dufour JJ, Rappaport J. Preservation of hearing in patients undergoing
1333	microsurgery for vestibular schwannoma: degree of meatal filling. J Neurosurg 2005;102(1):1-5.
1334	
1335	114. Lin VY, Stewart C, Grebenyuk J, et al. Unilateral acoustic neuromas: long-term hearing
1336	results in patients managed with fractionated stereotactic radiotherapy, hearing preservation
1337	surgery, and expectantly. Laryngoscope 2005;115(2):292-296.
1338	

1339	115. Bozorg Grayeli A, Kalamarides M, Ferrary E, et al. Conservative management versus
1340	surgery for small vestibular schwannomas. Acta Otolaryngol 2005;125(10):1063-1068.
1341	
1342	116. Betchen SA, Walsh J, Post KD. Long-term hearing preservation after surgery for vestibular
1343	schwannoma. J Neurosurg 2005;102(1):6-9.
1344	
1345	117. Maw AR, Coakham HB, Ayoub O, Butler SR. Hearing preservation and facial nerve
1346	function in vestibular schwannoma surgery. Clin Otolaryngol 2003;28(3):252-256.
1347	
1348	118. Friedman RS, Kesser B, Brackmann D, Fisher L, Slattery W, Hitselberger W. Long-term
1349	hearing preservation after middle fossa removal of vestibular schwannoma. Otolaryngol Head
1350	Neck Surg 2003;129(6):660-665.
1351	
1352	119. Chee GH, Nedzelski JM, Rowed D. Acoustic neuroma surgery: the results of long-term
1353	hearing preservation. Otol Neurotol 2003;24(4):672-676.
1354	
1355	120. Levo H, Blomstedt G, Pyykko I. Is hearing preservation worthwhile in vestibular
1356	schwannoma surgery? Acta Otolaryngol 2000:26-27.
1357	
1358	121. Lee SH, Wilcox TO, Buchheit WA. Current results of the surgical management of acoustic
1359	neuroma. Skull Base 2002;12(4):189-196.
1360	
1361	122. Kaylie DM, Gilbert E, Horgan MA, Delashaw JB, McMenomey SO. Acoustic neuroma
1362	surgery outcomes. Otol Neurotol 2001;22(5):686-689.
1363	
1364	123. Gjurić M, Wigand ME, Wolf SR. Enlarged middle fossa vestibular schwannoma surgery:
1365	experience with 735 cases. Otol Neurotol 2001;22(2):223-230.
1366	
1367	124. Kumon Y, Sakaki S, Kohno K, et al. Selection of surgical approaches for small acoustic
1368	neurinomas. Surg Neurol 2000;53(1):52-59.
1369	

1370	125. Lustig LR, Rifkin S, Jackler RK, Pitts LH. Acoustic neuromas presenting with normal or
1371	symmetrical hearing: factors associated with diagnosis and outcome. Am J Otol 1998;19(2):212-
1372	218.
1373	
1374	126. Kanzaki JO, K, Inoue, Y, Shiobara, R. Hearing preservation surgery in acoustic neuroma
1375	patients with normal hearing. Skull Base Surg 1997;7(3):109-113.
1376	
1377	127. Gormley WB, Sekhar LN, Wright DC, Kamerer D, Schessel D. Acoustic neuromas: results
1378	of current surgical management. Neurosurgery 1997;41(1):50-58.
1379	
1380	128. Weber PC, Gantz BJ. Results and complications from acoustic neuroma excision via middle
1381	cranial fossa approach. Am J Otol 1996;17(4):669-675.
1382	
1383	129. Post KD, Eisenberg MB, Catalano PJ. Hearing preservation in vestibular schwannoma
1384	surgery: what factors influence outcome? J Neurosurg 1995;83(2):191-196.
1385	
1386	130. Pollock BE, Lunsford LD, Kondziolka D, et al. Outcome analysis of acoustic neuroma
1387	management: a comparison of microsurgery and stereotaxic radiosurgery. Neurosurgery
1388	1995;36(1):215-224.
1389	
1390	131. Dornhoffer JL, Helms J, Hoehmann DH. Hearing preservation in acoustic tumor surgery:
1391	results and prognostic factors. Laryngoscope 1995;105(2):184-187.
1392	
1393	132. Kanzaki J, O-Uichi T, Ogawa K, Shiobara R, Toya S. Hearing preservation by the extended
1394	and nonextended middle cranial fossa approach for acoustic neuroma. Skull Base Surg
1395	1994;4(2):76-81.
1396	
1397	133. Brookes GB, Woo J. Hearing preservation in acoustic neuroma surgery. Clin Otolaryngol
1398	Allied Sci 1994;19(3):204-214.
1399	

1400	134. Glasscock 3rd ME, Hays JW, Minor LB, Haynes DS, Carrasco VN. Preservation of hearing
1401	in surgery for acoustic neuromas. <i>J Neurosurg</i> 1993;78(6):864-870.
1402	
1403	135. Goel A, Sekhar LN, Langheinrich W, Kamerer D, Hirsch B. Late course of preserved
1404	hearing and tinnitus after acoustic neurilemoma surgery. J Neurosurg 1992;77(5):685-689.
1405	
1406	136. Fischer G, Fischer C, Remond J. Hearing preservation in acoustic neurinoma surgery. J
1407	Neurosurg 1992;76(6):910-917.
1408	
1409	137. Sughrue ME, Kaur R, Rutkowski MJ, et al. A Critical evaluation of vestibular schwannoma
1410	surgery for patients younger than 40 years of age. Neurosurgery 2010;67(6):1646-1653.
1411	
1412	138. Quist TS, Givens DJ, Gurgel R, Chamoun R, Shelton C. Hearing preservation after middle
1413	fossa vestibular schwannoma removal: are the results durable? Otolaryngol Head Neck Surg
1414	2015;152(4):706-711.
1415	
1416	139. Stangerup SE, Caye-Thomasen P, Tos M, Thomsen J. Change in hearing during 'wait and
1417	scan' management of patients with vestibular schwannoma. J Laryngol Otol 2008;122(7):673-
1418	681.
1419	
1420	140. Sughrue ME, Yang I, Aranda D, Kane AJ, Parsa AT. Hearing preservation rates after
1421	microsurgical resection of vestibular schwannoma. J Clin Neurosci 2010;17(9):1126-1129.
1422	
1423	141. Ansari SF, Terry C, Cohen-Gadol AA. Surgery for vestibular schwannomas: a systematic
1424	review of complications by approach. Neurosurg Focus 2012;33(3):E14.
1425	
1426	142. Charabi S. Acoustic neuroma (vestibular schwannoma): growth and surgical and
1427	nonsurgical consequences of the wait-and-see policy. Otolaryngol Head Neck Surg
1428	1995;113(1):5-14.
1429	

1430	143. Massick DD, Welling DB, Dodson EE, et al. Tumor growth and audiometric change in
1431	vestibular schwannomas managed conservatively. Laryngoscope 2000;110(11):1843-1849.
1432	
1433	144. Walsh RM, Bath AP, Bance ML, Keller A, Rutka JA. Consequences to hearing during the
1434	conservative management of vestibular schwannomas. Laryngoscope 2000;110(2):250-255.
1435	
1436	145. Bozorg Grayeli A, Kalamarides M, Ferrary E, et al. Conservative management versus
1437	surgery for small vestibular schwannomas. Acta Otolaryngol 2005;125(10):1063-1068.
1438	
1439	146. Caye-Thomasen P, Dethloff T, Hansen S, Stangerup SE, Thomsen J. Hearing in patients
1440	with intracanalicular vestibular schwannomas. Audiol Neurootol 2007;12(1):1-12.
1441	
1442	147. Quaranta N, Baguley DM, Moffat DA. Change in hearing and tinnitus in conservatively
1443	managed vestibular schwannomas. Skull Base 2007;17(4):223-228.
1444	
1445	148. Ferri GG, Modugno GC, Pirodda A, Fioravanti A, Calbucci F, Ceroni AR. Conservative
1446	management of vestibular schwannomas: an effective strategy. Laryngoscope 2008;118(6):951-
1447	957.
1448	
1449	149. Pennings RJ, Morris DP, Clarke L, Allen S, Walling S, Bance ML. Natural history of
1450	hearing deterioration in intracanalicular vestibular schwannoma. Neurosurgery 2011;68(1):68-
1451	77.
1452	
1453	150. Fayad JN, Semaan MT, Lin J, Berliner KI, Brackmann DE. Conservative management of
1454	vestibular schwannoma: expectations based on the length of the observation period. Otol
1455	Neurotol 2014;35(7):1258-1265.
1456	
1457	151. Sughrue ME, Kane AJ, Kaur R, et al. A prospective study of hearing preservation in
1458	untreated vestibular schwannomas. J Neurosurg 2011;114(2):381-385.
1459	

1460	152. Carlson ML, Tveiten OV, Driscoll CL, et al. Long-term quality of life in patients with
1461	vestibular schwannoma: an international multicenter cross-sectional study comparing
1462	microsurgery, stereotactic radiosurgery, observation, and nontumor controls. J Neurosurg
1463	2015;122(4):833-842.
1464	
1465	153. Smouha EE, Yoo M, Mohr K, Davis RP. Conservative management of acoustic neuroma: a
1466	meta-analysis and proposed treatment algorithm. Laryngoscope 2005;115(3):450-454.
1467	
1468	154. Sughrue ME, Yang I, Aranda D, et al. The natural history of untreated sporadic vestibular
1469	schwannomas: a comprehensive review of hearing outcomes. J Neurosurg 2010;112(1):163-167.
1470	
1471	155. Maniakas A, Saliba I. Microsurgery versus stereotactic radiation for small vestibular
1472	schwannomas: a meta-analysis of patients with more than 5 years' follow-up. Otol Neurotol
1473	2012;33(9):1611-1620.
1474	
1475	156. Maniakas A, Saliba I. Conservative management versus stereotactic radiation for vestibular
1476	schwannomas: a meta-analysis of patients with more than 5 years' follow-up. Otol Neurotol
1477	2012;33(2):230-238.
1478	
1479	157. Yamakami I, Uchino Y, Kobayashi E, Yamaura A. Conservative management, gamma-
1480	knife radiosurgery, and microsurgery for acoustic neurinomas: a systematic review of outcome
1481	and risk of three therapeutic options. Neurol Res 2003;25(7):682-690.
1482	
1483	158. Shin YJ, Lapeyre-Mestre M, Gafsi I, et al. Neurotological complications after radiosurgery
1484	versus conservative management in acoustic neuromas: a systematic review-based study. Acta
1485	Otolaryngol 2003;123(1):59-64.
1486	
1487	159. Kaylie DM, Horgan MJ, Delashaw JB, McMenomey S. A meta-analysis comparing
1488	outcomes of microsurgery and gamma knife radiosurgery. Laryngoscope 2000;110(11):1850-
1489	1856.
1490	

1491	160. Mangham CA. Retrosigmoid versus middle fossa surgery for small vestibular
1492	schwannomas. Laryngoscope 2004;114(8):1455-1461.
1493	
1494	161. Carlson ML, Tveiten OV, Driscoll CL, et al. What drives quality of life in patients with
1495	sporadic vestibular schwannoma? Laryngoscope 2014.
1496	
1497	162. Tveiten OV, Carlson ML, Goplen F, Vassbotn F, Link MJ, Lund-Johansen M. Long-term
1498	auditory symptoms in patients with sporadic vestibular schwannoma: an international cross-
1499	sectional study. Neurosurgery 2015;77(2):218-227.
1500	
1501	163. Harner SG, Fabry DA, Beatty C. Audiometric findings in patients with acoustic neuroma.
1502	<i>Am J Otol</i> 2000;21(3):405-411.
1503	
1504	164. Carlson ML, Breen JT, Driscoll C, et al. Cochlear implantation in patients with
1505	neurofibromatosis type 2: variables affecting auditory performance. Otol Neurotol
1506	2012;33(5):853-862.
1507	
1508	165. Lassaletta L, Aristegui M, Medina M, et al. Ipsilateral cochlear implantation in patients with
1509	sporadic vestibular schwannoma in the only or best hearing ear and in patients with NF2. Eur
1510	Arch Otorhinolaryngol 2016;273(1)27-35.
1511	
1512	166. Lloyd SK, Glynn FJ, Rutherford SA, et al. Ipsilateral cochlear implantation after cochlear
1513	nerve preserving vestibular schwannoma surgery in patients with neurofibromatosis type 2. Otol
1514	Neurotol 2014;35(1):43-51.
1515	
1516	167. Hassepass F, Arndt S, Aschendorff A, Laszig R, Wesarg T. Cochlear implantation for
1517	hearing rehabilitation in single-sided deafness after translabyrinthine vestibular schwannoma
1518	surgery. Eur Arch Otorhinolaryngol 2016;273(9):2373-2383.
1519	

1520	168. Kemink JL, Langman AW, Niparko JK, Graham MD. Operative management of acoustic
1521	neuromas - the priority of neurologic function over complete resection. Otolaryngol Head Neck
1522	Surg 1991;104(1):96-99.
1523	
1524	169. Monfared A, Corrales E, Theodosopoulos P, et al. Facial nerve outcome and tumor control
1525	rate as a function of degree of resection in treatment of large acoustic neuromas: preliminary
1526	report of the acoustic neuroma subtotal resection study. Neurosurgery 2016;79(2)194-203.
1527	
1528	170. Raftopoulos C, Abu Serieh B, Duprez T, Docquier MA, Guérit JM. Microsurgical results
1529	with large vestibular schwannomas with preservation of facial and cochlear nerve function as the
1530	primary aim. Acta Neurochir (Wien) 2005;147(7):697-706.
1531	
1532	171. Flickinger JC, Kondziolka D, Niranjan A, Lunsford LD. Results of acoustic neuroma
1533	radiosurgery: an analysis of 5 years' experience using current methods. J Neurosurg 2013;119:3-
1534	8.
1535	
1536	172. Scheller C, Wienke A, Tatagiba M, et al. Prophylactic nimodipine treatment for cochlear
1537	and facial nerve preservation after vestibular schwannoma surgery: a randomized multicenter
1538	phase III trial. J Neurosurg 2016;124(3):657-664.
1539	
1540	173. Scheller C, Wienke A, Wurm F, et al. Neuroprotective efficacy of prophylactic enteral and
1541	parenteral nimodipine treatment in vestibular schwannoma surgery: a comparative study. J
1542	Neurol Surg A Cent Eur Neurosurg 2014;75(4):251-258.
1543	
1544	174. Brackmann DE, House 3rd JR, Hitselberger WE. Technical modifications to the middle
1545	fossa craniotomy approach in removal of acoustic neuromas. Am J Otol 1994;15(5):614-619.
1546	
1547	175. Aronzon AR, Ruckenstein MJ, Bigelow DC. The efficacy of corticosteroids in restoring
1548	hearing in patients undergoing conservative management of acoustic neuromas. Otol Neurotol
1549	2003;24(3):465-468.
1550	

- 1551 176. Kandathil CK, Dilwali S, Wu CC, et al. Aspirin intake correlates with halted growth of
- sporadic vestibular schwannoma in vivo. Otol Neurotol 2014;35(2):353-357.
- 1553
- 1554 177. Plotkin SR, Merker VL, Halpin C, et al. Bevacizumab for progressive vestibular
- 1555 schwannoma in neurofibromatosis type 2: a retrospective review of 31 patients. *Otol Neurotol*
- 1556 2012;33(6):1046-1052.
- 1557
- 1558 **178.** Gao X, Zhao Y, Stemmer-Rachamimov AO, et al. Anti-VEGF treatment improves
- 1559 neurological function and augments radiation response in NF2 schwannoma model. *Proc Natl*
- 1560 *Acad Sci U S A* 2015;112(47):14676-14681.