

Neuropsychologic Effects of Dual Lead Thalamic DBS to Treat Severe Multiple Sclerosis Tremor

Seth Franklin Oliveria MD PhD; Michael S. Okun MD; Kelly D. Foote MD University of Florida Departments of Neurosurgery and Neurology and Center for Movement Disorders and Neurorestoration

Introduction

Surgical treatment of severe multiple sclerosis (MS) tremor via lesioning or deep brain stimulation (DBS) has proven more difficult than for essential or parkinsonian tremor, resulting in mixed and often disappointing results. This may be due to tremor pathophysiology beyond the cerebellothalamo-cortical loop targeted by these procedures, or due to involvement of a relatively wide somatotopic distribution that cannot be fully captured from a single point.

Methods

Inclusion criteria: clinical diagnosis of MS tremor, age 18-79, tremor refractory to medical therapy, stable medical regimen

Exclusion criteria: medical comorbidity precluding surgery, evidence of atypical movement disorder, structural brain abnormality precluding DBS, dementia, major psychiatric illness

12 patients were enrolled:

ID	Age at implant	Sex	MS subtype	Disease Duration (y)	Tremor Duration (y)	Baseline TR	
2	30	F	relapsing-remitting	7	6	53	
4	27	М	relapsing-remitting	19	1.5	66	
6	49	F	relapsing-remitting	15	7	50	
7	54	F	primary progressive	8	8	50	
9	47	F	relapsing-remitting	28	17	68	
			relapsing-remitting,				
10	51	F	gradual progression	18	17	60	
11	26	М	primary progressive	1.5	1.5	62 **	
12	72	F	primary progressive	13	3	81	
13	23	F	primary vs secondary	3	2	55	
14	40	F	relapsing-remitting, progressing to secondary	20	11	50	
15	36	F	relapsing-remitting	7	5	76	
16	58	F	relapsing-remitting	30	8	46	
** rea	this pat quiring D	ient a BS ex	lid not complete the plantation	e protocol du	ie to woun	d infection	

Methods, continued

All patients underwent standard VIM DBS lead placement followed by parallel VO lead placement 2 mm anterior to the VIM tract, via a single burr hole

Patients were randomized to either VIM- or VO-only stimulation for 3 months, then both leads were activated and optimized for 3 more months. Patients and evaluators were blinded to stimulation conditions

TRS was measured at baseline and 3 months. At 6 months TRS was performed in all 4 possible conditions (Both Off, Both On, VIM On, VO On). Mood and neuropsychological batteries were also performed at each time point.

Results Mean TRS Scores:

Results, continued Individual TRS scores:

For many subjects, DBS had a profound effect

Additional improvement often observed with dual lead stimulation 3 nonresponders were observed: 2 with severe ataxic tremor component, one with worsening likely due to MS progression

Adverse Events:

- -1 hardware infection requiring explantation
- -1 superficial wound infection
- 1 transient altered mental status1 sudden death 2 years
- postoperatively, IRB determined unrelated to procedure
- -1 fractured extension 1 year postop -1 postop MS exacerbation (new

plaque), progressive hemiparesis and spasticity, > 1 year postop

Measure	Baseline	Both Off	Both On	VIM On	VO On	Results of Paired Sample t-tests
	(B)	(T1)	(T2)	(T3)	(T4)	-
Stroop						
Word*	55.7 (24.0)	54.4 (20.1)	58.7 (14.7)	56.1 (22.7)	56.5 (15.9)	-
Color	46.7 (15.4)	41.1 (16.4)	40.0 (15.3)	39.6 (21.2)	39.2 (16.3)	B > VO On (p = 0.02)
Color-Word	30.4 (16.3)	25.9 (12.6)	26.3 (11.5)	26.8 (14.4)	23.8 (12.1)	
Interference"	3.20 (7.35)	3.94 (8.37)	4.23 (5.37)	5.68 (6.70)	2.68 (6.09)	VIM On > VO On (p = 0.02)
PASAT						
Trial b	24.3 (13.1)	24.7 (15.0)	26.2 (15.3)	25.1 (15.8)	27.5 (16.9)	-
Total	41.4 (25.6)	47.3 (30.8)	50.3 (28.5)	47.4 (30.5)	43.8 (27.9)	-
Fluency						
Letter	31.1 (7.61)	28.2 (8.60)	29.3 (6.60)	28.4 (5.50)	28.4 (5.63)	-
Semantic	14.5 (5.16)	21.6 (13.2)	16.1 (4.35)	14.8 (6.65)	16.1 (5.26)	-
HVLT						
Trial 1	6.42 (1.62)	6.75 (1.76)	6.67 (1.88)	6.83 (1.34)	6.92 (2.43)	-
Total Recall	24.1 (3.85)	25.3 (5.21)	25.2 (4.65)	25.7 (3.63)	23.9 (6.61)	-
Delayed Recall*	6.83 (3.35)	8.58 (3.32)	8.33 (3.65)	7.75 (3.67)	7.91 (2.66)	-
Percent Retention	68.0 (31.9)	86.1 (25.2)	79.4 (27.5)	75.0 (31.8)	84.4 (16.1)	Both Off $>$ VIM On (p = 0.04)
RDI	10.3 (1.82)	11.0 (2.00)	10.9 (1.62)	10.9 (2.27)	10.3 (2.49)	B < Both Off (p = 0.05), Both On (p = 0
lote: Mean (SD) a	are provide	for each va	riable: Bol	ded values	indicate a s	significant difference ($p \le 0.05$) for
iven variable acro	nee teeting (conditione h	ased on re	eulte of pai	rad comple	t-teete
Deet DBC testing	sanditione	for this year	able differ	Suns or par		vith beerline seeres employed a
Post-DBS testing	conditions	for this vari	able differ :	significantiy	(p < 0.05)	with baseline scores employed a

Conclusions

Dual VIM plus VO DBS significantly improved tremor rating scale scores at 6 months compared to baseline. Vim and VO stimulation alone achieved equivalent tremor suppression. Major adverse events were infrequent and similar to routine DBS implantation. No major deleterious mood or cognitive changes were observed during extensive testing at each time point. There were 3 nonresponders in this cohort, who illustrate pitfalls of DBS for MS tremor including severe comorbid ataxia and underlying MS disease progression. We conclude that, for carefully selected patients, dual lead thalamic DBS is safe and efficacious for treatment of severe, refractory MS tremor.