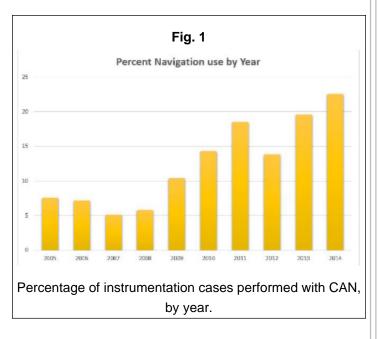


Spinal Computer-Assisted Intra-Operative Three-Dimensional Navigation in Canada: A Population-Based Time Trend Study


Daipayan Guha MD; Ali Moghaddamjou; Naif M. Alotaibi MD; Albert Yee MD; Victor Xiao Dong Yang MD, PhD, MSc, BSc Division of Neurosurgery, University of Toronto

Introduction

Spinal computer-assisted navigation (CAN) is proven to increase instrumentation accuracy. Adoption remains limited by workflow restrictions, learning curves and costs. Here, we assess spinal CAN usage among Ontario surgeons to identify gaps in application, and temporal trends of usage.

Methods

A prospectively-collected database of provincial insurance billables and diagnostic codes was reviewed retrospectively, from 2002-2014. Patients undergoing instrumented spinal fusions or percutaneous vertebroplasty/kyphoplasty were identified. Fee and diagnostic codes were applied to distinguish surgical indication and approach. The use of intra-operative navigation was determined for each case.

Table 1					
	No Navigation	Navigation	Total	P-Value	
Year					
<2013	2,918 (88.94)	363 (11.06)	3,281	⊲0.00	
≥2013	1,046(78.88)	280 (21.12)	1,326		
Academic institution					
No	2,184 (87.68)	307 (12.32)	2,491		
Yes	1,780 (84.12)	336 (15.88)	2,116		
Specialty					
Neuro sur gery	566 (79.05)	150 (20.9.5)	716		
Orthopedics	1,318 (87.63)	185 (12.37)	1,504		
Other	150 (93.75	10 (6.25)	160		
Pathology					
Kyphopiasty	797 (99.5)	797 (99.5)	801		
Degenerative	602 (80.16)	149 (19.84)	751	<0.001	
Deformity	582 (97.49)	15 (2.51)	597		
Trauma	39 (58.21)	28 (41.79)	67		
Other	22 (95.65)	1 (4.35)	23		
Surgical Approach					
Anterior	178 (85.17)	31 (14.83)	209	0.001	
Posterior	1,830 (91.91)	161 (8.09)	1,991		
Gender					
Female	2,171 (86.81)	330 (13.19)	2,501	0.104	
Male	1,793(85.14)	313 (14.86)	2,105		
Rural Setting					
No	3,489 (86.15)	561 (13.85)	4,050	0.545	
Yes	472 (85.2)	82 (14.8)	554		
Age Group					
25-64 yrs	1,909 (85.07)	335 (14.93)	2,244	<0.001	
65+yra	1,358 (84.03)	260 (15.97)	1,528		
<25yrs	687 (93.47)	48 (6.53)	735		

Univariate analysis of predictors of navigation usage

Results

We identified 4607 instrumented spinal fusions in our cohort. Most cases were performed by orthopedic surgeons (63.2%) and the remainder by neurosurgeons. Of 2239 cases with identifiable etiology, CAN was utilized in 8.8%, predominantly for trauma and degenerative pathologies rather than deformity. In univariate analyses, CAN was used more often by neurosurgeons (21.0% vs. 12.4%, p<0.001), in academic institutions (15.9% vs. 12.3%, p<0.001), and when performed in/after 2010 (18.9% vs. 8.9%, p<0.001). Differences by specialty and year remained significant in multiple logistic regression.

Learning Objectives

By the conclusion of this session, participants should be able to:

1) Identify the spatial and temporal trends in navigation usage for spinal procedures in a singleprovince cohort in Canada

2) Identify shortcomings in navigation technology leading to gaps in usage, with the goal of improving the development of future navigation techniques to address these translational gaps

	Table 2			
	ODD5 RATIO	95% CONFIDENCE INTERVAL	P-VALUE	
YEAR				
<2013	1.00			
×2013	2.88	1.34-6.21	0.007	
ACADEMIC INSTITUTION				
NO	1.00			
YES	1.23	0.51-2.99	0.648	
SPECIALTY				
ORTHOPEDICS	1.00			
NEUROSURGERY	2.87	1.32-6.27	0.008	
OTHER	1.68	0.49-5.71	0.408	
PATHOLOGY				
KYPHOPLASTY	1.00			
DEGENERATIVE	20.01	5.41-74.1	<0.001	
DEFORMITY	7.34	2.05-26.3	0.002	
TRAUMA	90.14	13.7-592.94	<0.001	
SENDER				
MALE	1.00			
FEMALE	1.01	0.49-2.10	0.973	
RURAL SETTING				
NO	1.00			
YES	1.20	0.45-3.21	0.718	
AGE GROUP				
<251185	1.00			
65+YRS	7.87	2.14-28.95	0.002	
25-64YRS	4.52	1.21-16.89	0.025	
SURGICAL APPROACH				
ANTERIOR	1.00			
POSTERIOR	1.86	0.45-7.72	0.394	

Multivariate analysis of predictors of navigation use

Conclusions

Spinal CAN has proven benefit for instrumentation accuracy, but is used preferentially by academic neurosurgeons. Significant gains must be made in cost and usability to improve access across disciplines and institutions.