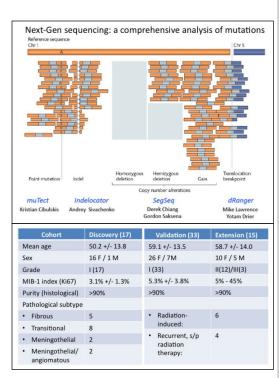


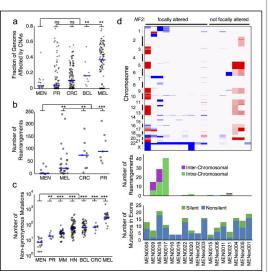
Novel Oncogene Discovery in Meningiomas

Peleg M Horowitz MD, PhD; Priscilla Brastianos MD; Sandro Santagata MD, PhD; Robert Jones MD; Aaron McKenna; Gad Getz PhD; Keith L Ligon MD, PhD; Emanuele Palescandolo; Paul Van Hummelen; William Hahn MD, PhD; Ian F. Dunn MD; Rameen Beroukhim MD, PhD

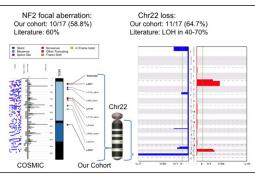

Brigham and Women's Hospital Department of Neurosurgery; Boston Children's Hospital Department of Neurosurgery; Dana-Farber Cancer Institute; Harvard Medical School; and Broad Institute of MIT and Harvard

Introduction

Meningiomas are the most common primary tumor of the central nervous system. Although most are cured by surgery, 20% recur and tend to be minimally responsive to systemic therapy. A major impediment to the treatment is that the somatic genetic events driving meningioma oncogenesis are poorly understood. Although recurrent losses of chromosomes 22q (containing *NF2*), 6q, and 14q have been detected, no genes other than *NF2* have been convincingly linked to meningioma oncogenesis.


Methods

DNA from seventeen grade I meningiomas and paired blood normals was subjected to nextgeneration sequencing (11 by 60x whole genome and 6 by exome-capture sequencing). Sequences were analyzed by algorithms for detection of somatic mutations, indels, translocation/rearrangements, and copy number alterations. A mutational significance algorithm (MutSig) was then used to determine significant, recurrent events (**Fig 1, Table 1**).


Results

Meningioma genomes are simple compared to other sequenced tumors

Fig 2. Meningiomas harbor fewer copy-number alterations (a), rearrangements (b), and non-synonymous mutations (c) than other published tumors (refs). (d) The landscape of somatic genetic alterations in the discovery set of meningiomas.

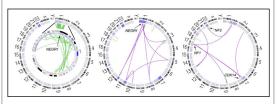

NF2 bi-allelic inactivation

Fig 3. As expected, *NF2* was identified as the top hit, with over half of tumors harboring nonsense mutations, frame-shift indels, or splice site mutations leading to NF2 disruption. One sample had a translocation affecting the *NF2* gene and a nearby region of chr22. All samples with *NF2* mutations also showed copy number loss on chr22.

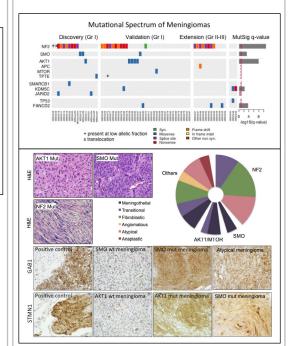

Novel Rearrangements in Meningiomas

Fig 3. Copy number alterations and rearrangements of three meningiomas are depected, including chromothripsis on chr1 (*Left*), which disrupts the putative tumor suppressor *NEGR1*, also disrupted in a second sample (*Center*). Rearrangments in a third sample lead to disruption of multiple tumor suppressors: *NF2*, *NF1*, and *CDK14*.

Mutations in oncogenes not previously described in meningiomagenesis

In addition, several known cancer driver mutations were seen co-occurring with *NF2* mutation. Interestingly, we identified a subset of meningiomas that do not harbor *NF2* loss. Some such tumors contain *SMO* and *AKT1* mutations, which may represent novel oncogenes and tumor suppressors driving meningioma tumorigenesis (**Fig 4**).

Fig 5. Mutations in SMO and AKT1 are

associated with particular histologic and immuno -histochemical phenotypes. *SMO* and *AKT1* drive cancer in other tissues and are already the targets of chemotherapy agents. One in six grade I meningiomas harbored a mutation in *SMO* or *AKT1* in our cohort, suggesting immediate potential therapeutic options for such patients.

Fig 6. Biology and inhibitors of *SMO* (left) and *AKT1* (right)

PTCH1 1		B Wet type also SMC inhibitors MC	NO Primary cilium	ta de	S Y	
	1	F	E CA	Inhibitor Name	Company	Target
			C	A-443654	Abbett	ATP binding site
			eosome	Q582690693	Glass/SmithKline	ATP binding site
		Target genes		058690693 XL418	OlasoSmithKine Eselasis	ATP binding site ATP binding site
						ATP binding site
Comment	100	Target genes	PTCHI	XL418 Truncated OSX18	Eselixis	ATP binding site
Cempound GDC-0419	Genentech	Target genes (GLI1, GLI2 and I	Type Phase VII	XL418 Trancated GSX3p pseudorabstrate	Exeloxis Yale University of South Florida	ATP binding site Substrate binding site on Kinase domai
GDC-0449 LDE225	Genentech Novartis	Target genes (GLII, GLI2 and I Number of trials	Type Phase VII Phase VII	XL418 Trancated GSK3p pseudowhritate WAY-178210-A-1 Phosphatidylinositol ether	Exelutio Yale University of South Florida Wyeth	ATP binding site Substrate binding site on Kinase domain T-loop of kinase domain
GDC-0449 LDE225 BMS-833923 (XL139)	Genentech Novartis BMS/Exelixis	Number of triels 28 5 5	Type Phase VII Phase VII Phase VII	XI.418 Trancated GSK3p presidentifytate WAY-178210-A-1 Phosphatidylanoutol ether lipid malogues (PIAs)	Exeliais Yale University of South Florida Tolyeth MD Anderson NIH	ATP binding site Substrate binding site on Kinste domain T-loop of kinste domain PH domain
GDC-0449 LDE225 BMS-833923 (XL139) IPI-926	Genentech Novartis BMS/Exelinis Infinity Pharm	Target genes (GLII, GLI2 and I Number of trials	Type Phase VII Phase VII Phase VII Phase VII	XX.418 Trancated GSK30 presidentististe WAY.178216.A.1 Phosphatolylanoutol ether lipid malogues (PLAs) Pesifosiae	Enelasis Yale-University of South Florida Tolyeth MD Anderson/NER Ketys	ATP binding site Substrate binding site on Kinase domain T-Joop of kinase domain PH domain PH domain
GDC-0449 LDE225 BMS-833923 (XL139)	Genentech Novartis BMS/Exelixis	Number of triels 28 5 5	Type Phase VII Phase VII Phase VII	XX.418 Trancated GSX.35 pseudorub/state WAY.178216-A-1 Phosphath/thosotol effer lopid malogues (PEA) Petifosiae PHT-427	Enelaxis Yale University of South Florida Wyeth MD Auderson NIH Kenyx Félasio Therapeutics	ATP binding site Substrate binding site on Kinase domain T-doop of kinase domain PH domain PH domain PH domain

Conclusions

While a majority of the grade I meningiomas we studied showed the classic "two-hit" pattern of somatic mutation and loss of heterozygosity in NF2, we identified a subset of tumors that are NF2-wild-type and discuss the genetic events in these samples that may be affecting novel oncogenes or tumor suppressors.

References

Bass Nature Gen (2011); Berger Nature (2011); Berger Nature (2012); Beroukhim Nature (2010); Carpten Nature (2007); Chapman Nature (2011); Lohr PNAS (2012); Mao Camcer Res (2006); Meyerson Nature Rev Genet (2010); Ng Nature Rev (2011); Stransky Science (2011).

Support

This work was generously supported by the Brain Science Foundation (PB, IFD, RB, SS), a Department of Defense Neurofibromatosis Research Fellowship (PMH), American Brain Tumor Association grant (PB) and NIH K12 (PB) and K08 (RB, SS) grants.