

Analysis of Venous Thromboembolism Risk in Patients Undergoing Craniotomy

Hanna Algattas; Kristopher T. Kimmell MD; G. Edward Vates MD, PhD; Babak S. Jahromi MD, PhD, FRCS(C)

Department of Neurosurgery

University of Rochester Medical Center

Introduction

-In the current era of healthcare reform, there is a significant focus on outcome improvement and cost reduction.

-Postoperative venous thromboembolism (VTE) is a significant risk post-craniotomy and the decision to use prophylactic anticoagulation is unclear.

-Studies suggest the risk reduction of VTE may be matched by the risk elevation in intracranial hemorrhage when using anticoagulation.

-The National Surgical Quality Improvement Program (NSQIP) provides a wide array of data aimed at improving outcomes and records variables, including VTE.

Objectives

1)Understand the factors associated with VTE post-craniotomy.

2)Develop a risk scoring system which is capable of delineating a subset of patients at highest risk for VTE.

3)Demonstrate the effectiveness of the VTE risk scoring model against previously analyzed data.

Methods

-10,477 adult craniotomy cases from 2011 -2012 NSQIP data set

-Univariate Chi-squared analysis and multivariate binary logistic regression model

-Risk score creation and receiver operating characteristics (ROC) curve

-Planned validation on previously analyzed NSQIP data sets which was completed prior to the release of 2011-2012 NSQIP data

VTE events and mortality rate					
Group	Total Patients (%)	30 Day Mortality Rate (%)			
Overall Cohort	10447	4.8			
No VTE	10114	4.6			
VTE	333 (3.2)	9.6			
DVT	246 (2.4)	10.2			
PE	131(1.3)	10.7			

Factors significant after univariate analysis

Preoperative		Intraoperative/Postoperative	
Ventilator dependence		Ventilator dependence > 48 hrs	
Non-elective surgery		Unplanned reintubation	
Estimated probability	of	Infection (PNA, UTI, sepsis, septic	
mortality > 10%		shock)	
Estimated probability	of	Return to OR	
morbidity > 10%			
Admission to OR time > 4d		Bleeding transfusion	
Emergency case		CVA	
Dependent functional status		Impaired sensorium	
Age > 60		Cardiac arrest requiring CPR	
Transfer from acute care facility		Progressive renal insufficiency	
Hemiplegia		Coma > 24 hrs	
Steroid use		ASA Class 4-5	
Inpatient			
BMI > 30			
African-American race			
Hypertension			

Risk scores and associated VTE event rates, days to discharge, and mortality

VTE Score	Risk	No. Patients (% Total)	VTE Rate (%)	DVT Rat (%)	e PE Rate (%)	Mean days from surgery to discharge*	Mean 30d mortality rate [n (%)]*
0		129(1.2)	0.0*	0.0	0.0	0.4	1 (0.2)
1		2010 (20.5)	0.7*	0.4*	0.3*	3.3	5 (1.0)
2		3117 (29.8)	1.9*	1.1*	1.1	4.1	26 (5.2)
3		2419 (23.2)	2.6	1.9	1.2	5.3	67 (13.5)
4		1379 (13.2)	4.4*	3.3*	1.7	7.6	100 (20.1)
5		708 (6.8)	6.6*	4.9*	2.5*	11.2	96 (19.3)
6		334 (3.2)	9.6*	7.8*	21	12.6	82 (16.5)
≥7		351(1.9)	15.7*	13.7*	3.1*	16.9	121 (24.3)
Overall#		10447	333*	246	131	5.8	498

Factors significant after multivariate analysis					
Pre-operative					
Ventilator dependence	3.13 (2.23-4.38)				
Non-elective surgery	2.04 (1.64-2.54)				
BMI > 30	1.51 (1.21-1.88)				
Age > 60	1.61 (1.30-2.01)				
Steroid use	1.76 (1.35-2.31)				
African-American race	1.85 (1.33-2.58)				
Inpatient	9.13 (2.27-36.78)				
Impaired Sensorium	2.57 (1.78-3.72)				
Admission to OR > 4d	2.00 (1.50-2.66)				
Intra-operative					
ASA 4-5	2.37 (1.87-3.02)				
Post-operative					
On ventilator > 48 hrs	5.89 (4.55-7.63)				
Infection	5.40 (4.04-7.22)				
Return to OR	4.64 (3.53-6.10)				

Rates of VTE, DVT, and PE at each risk score

Results

-Rate of VTE in cohort was 3.2% (PE=1.3%; DVT=2.4%)

-VTE is significantly associated with increased time from operation to discharge and mortality rate

-13 variables were associated with VTE after multivariate analysis

-VTE risk scores ranged from 0 to 11 (median score=2) and increasing scores were indicative of increasing VTE rate, mortality rate, and time from operation to discharge

-VTE risk score was capable of significantly predicting VTE in ROC analysis with area under the curve (AUC) of 0.719 (95% CI 0.691-0.747;p<0.001)

Conclusions

-The risk of post-op VTE after craniotomy is influenced by pre-operative comorbidities and post-operative complications. This risk can be quantified by a simple risk score, with increasing risk factors conferring increased risk of VTE. Based on risk scoring, a subset of patients may be identified that would benefit from anticoagulation post-craniotomy.

References

4.Camden, R.; Ludwig, S., Prophylaxis against venous thromboembolism in hospitalized medically ill patients: Update and practical approach. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists 2014, 71 (11), 909-17.

15.Hamilton, M. G.; Yee, W. H.; Hull, R. D.; Ghali, W. A., Venous thromboembolism prophylaxis in patients undergoing cranial neurosurgery: a systematic review and metaanalysis. Neurosurgery 2011, 68 (3), 571-81. 18.Ingraham, A. M.; Richards, K. E.; Hall, B. L.; Ko, C. Y., Quality improvement in surgery: the American College of Surgeons National Surgical Quality Improvement Program approach. Advances in surgery 2010, 44, 251-67.