Table 4: Specific MR Sequences

Author (Year)	Title	Study Description	Number of Patients	Classifica tion Process/ Evidence Class	Conclusions
Davis (2013) ⁵¹	Evaluation of the pituitary gland using magnetic resonance imaging: T1- weighted vs VIBE imaging.	Patients underwent both coronal T1-weighted and volumetric interpolated breath-hold examination imaging (VIBE). The 2 sequences were compared in terms of contrast enhancement, cavernous sinus appearance, and optic chiasm appearance. For each subject, VIBE was rated as better, equal, or worse to T1-weighted images and statistically compared using chi-square tests. These comparisons were also made while stratifying for macroadenomas and post- surgical patients.	32	Diagnostic / III	There was a trend to VIBE being superior to T1W for visualization of pituitary adenomas, but these data were not statistically significant. Visualization of chiasm in macroadenomas was similar for both techniques. VIBE was significantly superior to T1W with respect to pituitary and cavernous sinus contrast enhancement and cavernous sinus anatomy. Although not statistically significant, VIBE may improve the resolution of MR images for preoperative visualization of pituitary adenomas, cavernous sinus invasion, and optic chiasm compression. This strength may be even larger with higher tesla magnets.

Yamamoto (2014) ⁵³	Tumor consistency of pituitary macroadenom as: predictive analysis on the basis of imaging features with contrast- enhanced 3D FIESTA at 3T.	Patients underwent both conventional MRI and contrast-enhanced 3D FIESTA sequences preoperatively. Two neuroradiologists evaluated MR imaging findings, specifically those on the FIESTA scan. During surgery, neurosurgeons classified the tumors as soft or hard. Postoperatively, collagen content and residual tumor size was calculated. Fisher exact probability tests and independent sample <i>t</i> tests were used to compare	29	Diagnostic / III	Sensitivity and specificity were higher for contrast- enhanced FIESTA (1.00 and 0.88-0.92, respectively) than for contrast-enhanced T1WI (0.80 and 0.25-0.33, respectively) and T2WI (0.60 and 0.38-0.54, respectively). Compared with mosaic-type adenomas, solid-type adenomas tended to have a hard tumor consistency as well as a significantly higher collagen content and lower postoperative tumor size. Contrast-enhanced FIESTA can provide preoperative characterization of the consistency of pituitary adenomas.
		predictions of MR imaging findings to intraoperative tumor consistency, tumor collagen content, and postoperative tumor size.			
Rofsky (1999) ⁵⁴	Abdominal MR imaging with a volumetric interpolated breath-hold examination.	Clinical experience using VIBE MRI for assessment of pituitary lesions	20	Prognostic / III	VIBE offer superior resolution of anatomic structures relative to conventional MRI.

Davis (2013) ⁵¹	Evaluation of	Patients underwent both	32	Prognostic	There was a trend to VIBE being superior to T1W for
	the pituitary	coronal T1-weighted and		/ 111	visualization of pituitary adenomas, but these data were
	gland using	volumetric interpolated			not statistically significant. Visualization of chiasm in
	magnetic	breath-hold examination			macroadenomas was similar for both techniques. VIBE
	resonance	imaging (VIBE). The 2			was significantly superior to T1W with respect to
	imaging: T1-	sequences were compared			pituitary and cavernous sinus contrast enhancement
	weighted vs	in terms of contrast			and cavernous sinus anatomy.
	VIBE imaging.	enhancement, cavernous			
		sinus appearance, and			Although not statistically significant, VIBE may improve
		optic chiasm appearance.			the resolution of MR images for preoperative
		For each subject, VIBE was			visualization of pituitary adenomas, cavernous sinus
		rated as better, equal, or			invasion, and optic chiasm compression. This strength
		worse to T1-weighted			may be even larger with higher tesla magnets.
		images and statistically			
		compared using chi-square			
		tests. These comparisons			
		were also made while			
		stratifying for			
		macroadenomas and post-			
		surgical patients.			

Cao (2013)55	Magnetic	Patients underwent MRI	48	Prognostic	The sensitivity of MRI visualization of the medial wall of
	resonance	with both conventional		/ 111	the cavernous sinus for detection of CSI was 93.3%
	imaging	and proton density			with a specificity of 93.8%, which was significantly
	appearance of	weighted images			higher than other preoperative radiologic signs
	the medial	preoperatively. The			including KGS, PEICA, and RCSC ($P = .007, P = 0.008$,
	wall of the	appearance and invasion			and $P = .056$, respectively). Histopathological results
	cavernous	of medial wall of the			showed no significant differences between MRI
	sinus for the	cavernous sinus in the			visualization of the MWCS and the Ki-67 LI.
	assessment of	proton density weighted			
	cavernous	scans was compared to the			Proton density weighted scans can permit adequate
	sinus invasion	Knosp grading system,			visualization of the medial wall of the cavernous sinus.
	by pituitary	percentage encasement of			This sign was found to be the best in comparison to
	adenomas.	the internal carotid artery,			other radiologic signs with conventional MRI. This new
		and replacement of			type of scan may be the best way of identifying if
		cavernous sinus			tumor invades the cavernous sinus.
		compartment criteria on			
		conventional MR scans,			
		surgical findings, and Ki-67			
		labeling index results.			

Mahmoud	Role of	Patients with conventional	38	Diagnostic	ADC-MIN of hemorrhagic pituitary adenomas was
(2010)57	PROPELLER	MR and periodically		/ 111	lower than of the other lesions with similar appearance
	diffusion	rotated overlapping			on conventional MRI (non-hemorrhagic pituitary
	weighted	parallel lines with			adenomas, craniopharyngiomas, Rathke's cleft cysts;
	imaging and	enhanced reconstruction			accuracy 100%); the useful cut-off value was 0.700 x
	apparent	(PROPELLER) diffusion			10(-3)mm(2)/s. ADC-MAX of meningiomas was lower
	diffusion	weighted imaging were			than of non-hemorrhagic pituitary adenomas (accuracy
	coefficient in	retrospectively analyzed.			90.3%; P < .01). ADC-MIN of craniopharyngiomas was
	the diagnosis	ADC values were			lower than of Rathke's cleft cysts (accuracy 100%; P <
	of sellar and	calculated from the			.05).
	parasellar	PROPELLER scans. DC			
	lesions.	values for pituitary			As PROPELLER DWI can be useful in the examination
		adenomas and other sellar			of sellar and parasellar lesions, calculation of the ADC
		mass lesions were			values helps to differentiate between various sellar and
		analyzed using			parasellar lesions.
		intraoperative and			
		histological diagnoses as			
		the gold standard.			

Bladowska	Usefulness of	Patients underwent both	23	Diagnostic	There were statistically significant differences in the mean and maximum rCPV values $(P = 0.26 \text{ and } P = 0.10)$
(2013)	weighted	nerfusion weighted MR		/ 111	respectively) The maximum rCRV values ($P = .020$ and $P = .019$,
	magnetic	imaging Mean and			mean rCBV values >5.74 with the typical perfusion
	resonance	maximum values of			curve were very suggestive of the diagnosis of
	imaging with	relative cerebral blood			meningioma.
	signal-	volume, relative peak			0
	intensity	height, and relative			Perfusion weighted MR imaging can provide
	curves analysis	percentage of signal			supplemental information to differentiate pituitary
	in the	intensity recovery were			adenomas from meningiomas. However, it is unclear
	differential	calculated from the			how this improves the sensitivity and specificity of
	diagnosis of	perfusion weighted MR			diagnosis of sellar/parasellar tumors.
	sellar and	images. These parameters			
	parasellar	were compared between			
	tumors:	different pathologies			
	preliminary	(pituitary macroadenomas,			
	report.	cranionharyngioma			
		hemangioblastoma glioma			
		and metastasis).			
Manfre	Perfusion MRI	Patients with pituitary	13	Diagnostic	The timing of enhancement in normal patients matched
(1997)61	in normal and	adenomas, other		/ 111	perfectly with normal pituitary vascularization, while
	abnormal	sellar/parasellar pathology,			there was abnormal timing in pathological condition.
	pituitary gland.	and non-tumor controls			I hese tumors had significant enhancement either
	A preliminary	underwent perfusion MR			simultaneously or in the frame after the enhancement
	study.	maying. Differences in			of the dural sinuses.
		nercentual variation			Pituitary adenomas have specific characteristics on
		timing of enhancement			nerfusion MRI
		and patterns of			
		enhancement were			
		compared between the			
		different groups of			
		pathologies.			

Sakai (2013) ⁶²	Arterial spin-	Patients underwent both	11	Prognostic	A statistically significant difference in normalized tumor
	labeled	conventional MR imaging		/ 111	blood flow values was observed visually between the
	perfusion	and arterial spin-labeled			intraoperative hypovascular and hypervascular groups
	imaging	perfusion imaging. Degree			(P < .05). One of these hypervascular cases actually did
	reflects	of enhancement was			have symptomatic postoperative hemorrhage.
	vascular	calculated by dividing the			
	density in	signal intensity on T1-			ASL perfusion imaging can reflect the vascular density
	nonfunctionin	weighted with contrast to			of NFPAs and may be a viable test in predicting
	g pituitary	the T1-weighted without			intra/postoperative tumor hemorrhage.
	macroadenom	contrast. Normalized			
	as.	tumor blood flow values			
		were calculated by dividing			
		the mean value of the			
		tumor region of interest by			
		mean region of interest			
		values in the cerebellar			
		hemispheres. Relative			
		microvessel attenuation			
		was calculated by dividing			
		the total microvessel wall			
		area by entire CD31			
		stained tissue area. These			
		parameters were			
		compared with each other			
		as well as the presence of			
		intra- or postoperative			
		hemorrhage by surgeon			
		visualization.			

Mahmoud	Role of	Patients who underwent	19	Prognostic	Tumor consistency was strongly associated with the
(2011) ⁶³	PROPELLER	conventional MR and		/ 111	percent collagen content. However, neither the tumor
	diffusion-	periodically rotated			consistency nor the percent collagen content was
	weighted	overlapping parallel lines			correlated with MRI findings or ADC values. The SI of
	imaging and	with enhanced			growth hormone-producing adenomas on T2-WI was
	apparent	reconstruction			lower than that of the other pituitary adenomas studied
	diffusion	(PROPELLER) DWI were			(P < .01); no other significant difference was found in
	coefficient in	retrospectively analyzed.			the ADC or on conventional MRI between pituitary
	the evaluation	Mean, max, and min values			adenomas with different secretory functions. The MIB-
	of pituitary	from the PROPELLER DWI			1 LI of pituitary adenomas was not correlated with their
	adenomas.	images were calculated.			appearance on conventional MRI or their ADC values.
		Intraoperative tumor			
		consistency was recorded			Unlike other studies, this study found tumor
		by neurosurgeons. ADC			consistency was not correlated with ADC findings.
		values were compared to			
		tumor consistency			
		experienced			
		intraoperatively and			
		percent collagen content.			
Suzuki	Apparent	Patients prospectively	19	Prognostic	A soft consistency was found at surgery in 13 patients
(2007) ⁶⁴	diffusion	underwent line-scan		/ 11	(mean ADC: 0.84+/-0.1x10(-3) mm2/s); an intermediate
	coefficient of	diffusion weighted imaging			consistency was observed in 6 patients (mean ADC:
	pituitary	(LSDWI) and had ADC			0.81+/-0.16x10(-3) mm2/s). No tumors of hard
	macroadenom	values calculated. These			consistency were found. There was no significant
	a evaluated	ADC values were			difference in ADC values between tumors of soft
	with line-scan	correlated with the			consistency compared with tumors of intermediate
	diffusion-	consistency recorded at			consistency (P = 0.37).
	weighted	surgery.			
	imaging.				A relationship between tumor consistency and the
					ADCs of soft and intermediate macroadenomas was
					not shown in this study using LSDWI.