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Abstract

Target population These recommendations apply to adults with a newly diagnosed lesion with a suspected or histopatho-
logically proven glioblastoma (GBM).

Question What are the optimal imaging techniques to be used in the management of a suspected glioblastoma (GBM),
specifically: which imaging sequences are critical for most accurately identifying or diagnosing a GBM and distinguishing
this tumor from other tumor types?

Recommendations

Critical Imaging for the Identification and Diagnosis of Glioblastoma Level II: In patients with a suspected GBM, it
is recommended that the minimum magnetic resonance imaging (MRI) exam should be an anatomic exam with both T2
weighted, FLAIR and pre- and post-gadolinium contrast enhanced T1 weighted imaging. The addition of diffusion and per-
fusion weighted MR imaging can assist in the assessment of suspected GBM for the purposes of distinguishing GBM from
other tumor types. Computed tomography (CT) can provide additional information regarding calcification or hemorrhage
and also can be useful for subjects who are unable to undergo MR imaging. At a minimum, these anatomic sequences can
help identify a lesion as well as its location, and potential for surgical intervention.

Improvement of diagnostic specificity with the addition of non-anatomic (physiologic imaging) to anatomic imaging Level II:
One blinded prospective study and a significant number of case series support the addition of diffusion and perfusion weighted
MR imaging in the assessment of suspected GBM, for the purposes of distinguishing GBM from other tumor types (e.g., primary
CNS lymphoma or metastases).

Level III: It is suggested that magnetic resonance spectroscopy (MRS) and nuclear medicine imaging (PET 18F-FDG and
11C-MET) be used to provide additional support for the diagnosis of GBM.

Keywords Glioblastoma - Magnetic resonance imaging - PET imaging - Prognosis - Diagnostic specificity - Guidelines -
Perfusion weighted imaging - Diffusion weighted imaging

Abbreviations

ADC  Apparent diffusion coefficient
FA Fractional Anisotropy

GBM  Glioblastoma multiforme
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PCNL Primary central nervous system lymphoma
ROI Region of interest

DSC  Dynamic susceptibility contrast

DTI Diffusion tensor imaging

Rationale

Glioblastomas are diffuse, rapidly growing, intra-axial, pri-
mary brain tumors that are classified as grade 4 tumors by
the World Health Organization (WHO). Accurate diagno-
sis of these tumors (distinction of GBM from lower grade
tumors and from other intrinsic brain tumors including brain
metastases and primary central nervous system (CNS) lym-
phoma) and subsequent appropriate management is critically
important. The contribution of imaging to both measures of
diagnosis and prognosis is increasingly being recognized.
GBM is typically identified on an anatomic MRI study
as an enhancing mass lesion, hypointense on T1 weighted
precontrast imaging and hyperintense on T2 and FLAIR
imaging sequences. There is often a presence of signal
change within the tumor consistent with central necrosis.
The relevance of imaging in the accurate diagnosis of GBM
predates MR imaging technology, as tumor size, edema, and
the presence or absence of contrast enhancement on CT have
been recognized for decades as having relevance in predict-
ing the histological classification of primary brain tumors
[1, 2]. However, the advent of MR imaging has offered
additional imaging sequences that can aid in the preopera-
tive management of patients with suspected GBM. Nuclear
medicine techniques have also been increasingly considered
as potential markers for diagnosis and prognosis in GBM.

Objectives

The purpose of this guideline is to assess the ability of the
most widely used imaging techniques, primarily MRI and
PET/radiotracer techniques, to accurately diagnose a GBM
(distinguishing this from other tumor types, and from less
aggressive primary brain tumors) while simultaneously aid-
ing in the identification of subtypes of tumors for assistance
with prognosis and management decisions.

Methods
Writing group and question establishment

The evidence-based clinical practice guideline task-
force members, the Joint Tumor Section of the American

@ Springer

Association of Neurological Surgeons (AANS) and the Con-
gress of Neurological Surgeons (CNS) have prioritized an
update of the guidelines for management of newly diagnosed
glioblastoma (GBM). The writers represent a multi-discipli-
nary panel of clinical experts encompassing neurosurgery,
neuro-oncology, and radiation oncology. Together, they were
recruited to develop this update on the evidence-based prac-
tice guidelines for newly diagnosed glioblastoma (GBM)
in adults. The methodology and findings of the previous
guidelines were reviewed, and additional questions were
developed to incorporate recent literature addressing prac-
tice patterns in the management of GBM patients.

Literature review and eligibility criteria

The following databases were searched from January 1st,
2005 thru October 31st, 2018 using glioblastoma and
surgery relevant search MeSH and non-MeSH search
terms: PubMed (National Library of Medicine, https://
www.ncbi.nlm.nih.gov)) using “ABSTRACT/TITLE”
and entering “GLIOBLASTOMA” AND “IMAGING”
without date limits for a broad initial search. Additional
subsequent searches were performed searching “GLIO-
BLASTOMA” and other more specific imaging based
terms including “MRI”/*“MAGNETIC RESONANCE
IMAGING”, “CT”/*COMPUTED TOMOGRAPHY”,
“PET”/*POSITRON EMISSION TOMOGRAPHY”, AND
“DIFFUSION”, “PERFUSION”, “SPECTROSCOPY”,
“FDG”, “FET”, “MET”, AND “SPECT. The results were
then hand searched based on the titles and abstracts to
exclude laboratory only studies and titles not on topic. To
answer our questions related to prognosis, terms of “DIAG-
NOSIS” and “PROGNOSIS” were added to the search strat-
egy. Similar search strategies were used to search additional
databases including the Cochrane Database of Systematic
Reviews, the DARE (Database of Abstracts of Reviews of
Effect), and the Cochrane Central Register of Controlled
Trials. This overall search strategy yielded a total of 4493
unique citations.

Data collection process

The 4493 citations were manually reviewed by the team with
specific inclusion and exclusion criteria as outlined below.
Three independent reviewers considered abstracted and/or
full text data for each article and the two sets of data were
compared for agreement by a third party. Inconsistencies
were re-reviewed and disagreements were resolved by con-
sensus. Citations that considered adult patients focusing on
imaging in the diagnosis of GBM, prognosis of GBM, or
correlation of imaging with molecular markers were con-
sidered. We allowed that manuscripts could focus on a com-
parison of imaging features of GBM with low grade glioma
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or other tumor types as long as the GBM data could be
extracted separately from other tumor information. Abstracts
that focused on a pediatric population, therapeutic stud-
ies, case reports noting imaging features of unusual tumor
types, and articles focusing on brainstem gliomas or spinal
cord tumors were not included for review. Those abstracts
that met with the selection criteria mentioned above were
retrieved in full text form. The adherence to the selection
criteria were confirmed. Corresponding full-text PDFs were
obtained for all citations meeting the criteria, and reviewed.
This manual secondary review resulted in a list of 150 refer-
ences that appeared best suited to answer the questions. Data
was extracted by the first reviewer and verified by another,
all of which were compiled into evidence tables. The tables
and data were reviewed by all of the authors. Articles not
meeting the selection criteria were removed from considera-
tion for inclusion in the evidence tables.

scientific foundation

Classification of evidence and recommendation
levels

Both the quality of the evidence and the eventual strength
of the recommendations generated by this evidence were
graded according to a three-tiered system for assessing
studies addressing diagnostic testing as approved by the
American Association of Neurological Surgeons (AANS)/
Congress of Neurological Surgeons (CNS) Joint Guidelines
Review Committee criteria. Additional information on
study classification and recommendation development can
be found at https://www.cns.org/guidelines/guideline-proce
dures-policies/guideline-development-methodology. Imag-
ing studies that considered markers of diagnostic specificity
were reviewed using these guidelines, considering a histo-
pathological diagnosis as a “gold standard.”

In order to have class I evidence and/or a level I rec-
ommendation regarding imaging, data must be from one or
more well-designed clinical studies in a diverse population
using a "gold standard" reference test. Well-designed clini-
cal studies should include a blinded evaluation appropriate
for the diagnostic applications, sensitivity, specificity, posi-
tive and negative predictive values, and where applicable,
likelihood ratios. Class II evidence and level II recommen-
dations require that evidence be provided by one or more
well-designed clinical studies of a restricted population
using a “gold standard” reference test in a blinded evaluation
appropriate for the diagnostic applications and enabling the
assessment of sensitivity, specificity, positive and negative
predictive values, and, where applicable, likelihood ratios.
For Class III evidence and/or a Level III recommendation,
data is provided by expert opinion or studies that do not meet

the criteria for the delineation of sensitivity, specificity, posi-
tive and negative predictive values, and, where applicable,
likelihood ratios.

Imaging series that consider these same markers with
respect to prognosis were reviewed considering five tech-
nical criteria. If all five of these criteria are satisfied, the
evidence is classified as Class I. If four out of five are satis-
fied, the evidence is Class II, and if less than 4 are satisfied,
it is Class III:

e Was a well-defined representative sample of patients (
which includes adult patients where those with newly
diagnosed glioblastoma can clearly be delineated and
assessed within the reported population) assembled at
a common (usually early) point in the course of their
disease?

e Was patient follow-up sufficiently long defined as
(>1 year) and complete (shorter periods acceptable if
follow-up till death described).

e Were objective outcome criteria applied in a “blinded”
fashion?

e If subgroups with different prognoses were identified,
was there adjustment for important prognostic factors?

e If specific prognostic factors were identified, was there
validation in an independent “test set” group of patients?

Study selection and characteristics

Following broad screening for relevance, two independ-
ent reviewers evaluated citations and full text screening of
potentially relevant papers using a priori criteria for data
extraction on a standardized form. Disagreements were
resolved with the involvement of a third reviewer, followed
by primary re-review until agreement was achieved.

Overall, 27 publications met the eligibility criteria and
are included in the evidentiary tables below. These papers
were subdivided into publications that answered the specific
imaging questions of diagnostic specificity (13), prognosis
(8), and methods that suggest correlation between imaging
and molecular tumor subtype (6) and are identified specifi-
cally in Tables 1, 2, and 3. The details of this evidence are
described in detail below.

Specifically, as regards levels of evidence, although
numerous series compared imaging markers with histopa-
thology (as a gold standard) to consider diagnostic speci-
ficity, none were prospective, continuous series in a large
enough (~ 100 +) diverse population (various ages, patholo-
gies, and stages of disease process) to classify the study as
class I. In the case when a series was able to show statis-
tically significant data with blinded comparisons, sample
size (< 100) was the reason for downgrading. This is not
uncommon in imaging studies, where technological limi-
tations still prevent the large sample sizes that would be
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k value calculated was 0.80, suggesting that the ability to separate glioblastoma from
other pathology is good with CT. This data demonstrated the value of CT in evalua-

Sensitivity, specificity, PPV and NPV were 86%, 93%, 86%, and 93%, respectively. The
tion of GBM. This study was limited by small GBM case number

Conclusuions

Data Class

I

in distinguishing GBM from other tumor types. Radiologists were blinded to tissue

tive consideration of 90 patients with brain tumors considered features that assisted
diagnosis

Consideration of CT for the differential diagnosis of common brain tumors. Prospec-

Description of study
Interest, V,: Extravascular Extracellular Volume, LGG: Low Grade Glioma, HGG: High Grade Glioma, AA: Anaplastic Astrocytoma, SUV: Standardized Uptake Value, AUC: Area Under the

Transfer Constant, ASL: Arterial Spin Labeling, TBF: Tumor Blood Flow, IVIM MRI: Intravoxel Incoherent Motion, ROC: Rate of Change, PWI: Perfusion Weighted Image, ROI: Region of
Curve

PCNSL: Primary Central Nervous System Lymphoma, DTI: Diffusion Tensor Imaging, DWI: Diffusion Weighted Imaging, SWI: Susceptibility Weighted Imaging, CBV: Cerebral Blood Vol-
ume, ADC: Apparent Diffusion Coefficient, rCBV: Relative Cerebral Blood Volume, APTw: Amide Proton Transfer Weighted, DCE MRI: Diffusion Coefficient Ratio MRI, K"*: Volume

Table 1 (continued)
Amundsen et al. (1978)

Author (Year)
Abbreviations:

required to provide class I evidence. Many series provided
interesting and useful consideration of imaging biomarkers
but did not review data in a blinded fashion, or were not able
to provide enough statistical analyses to provide sensitivity,
specificity or predictive data and were thus downgraded to
class III. In the studies that provided data regarding imag-
ing markers and prognosis, several considered models for
multiparametric image analysis and did have a test set for
comparison, providing Class II data; in series considering
individual imaging markers and clinical prognosis, only
class III evidence was achieved, largely because of a lack
of a test set for comparison, and again the relatively small
sample size in these patient populations.

Assessment for risk of bias

Our search generated a list of abstracts, which were screened,
and those articles that addressed our identified questions
underwent full independent review by the authors. Review-
ers were critical in their assessment, specifically in regard
to trial design, such as randomization of treatment, blinded-
ness, prospective character, etc., size of study population,
baseline characteristics between study groups, which could
account for survivorship bias, selection bias, and appropriate
statistical analyses of reported data.

Results of individual studies
Imaging and diagnostic specificity—glioblastoma

Anatomic MR imaging Most recent imaging studies do not
specifically reference the diagnostic specificity of anatomic
MR imaging sequences, although historically, studies have
considered aspects of anatomic imaging, particularly focus-
ing on the presence or absence of contrast enhancement on
CT or MR imaging studies. However, a total of three studies
provide evidence for the use of anatomic imaging features in
considering GBM diagnostic specificity. Two of these pro-
vide Class II evidence and one provides Class III evidence.

The earliest of these studies, by Amundsen et al.,
described a prospective and blinded assessment of CT with
and without contrast in the diagnosis of 46 brain tumors,
15 of which were glioblastoma [1]. 13 of these were diag-
nosed correctly by imaging without knowledge of histol-
ogy. Another early study considered CT imaging and brain
tumors as the technology was just coming into common
practice. Ketonen et al. were able to collect over eighteen
hundred cases and review all the diagnoses given retro-
spectively [2]. Ninety cases were tumors and all but one
was confirmed histologically. The authors claim 21 of 22
GBMs were diagnosed correctively suggesting the utility of
CT imaging in evaluating malignant primary brain tumors.
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However, no prospective assessment of these images by
blinded observers was performed. While CT imaging is not
used routinely in the analysis of patients with GBM, often
a CT is the first study acquired in a patient with symptoms
suggestive of a tumor, and at times, even today, patients may
have implanted technology (pacemaker, stimulator) that pre-
cludes obtaining MR imaging studies, so these original stud-
ies remain valid.

In subsequent decades, as MR imaging became more
common, Dean et al. considered MR imaging features alone
in separating astrocytoma from anaplastic astrocytoma and
glioblastoma by asking two blinded neuroradiologists to
score each imaging features on a 0-2 scale [3]. They con-
cluded that imaging review provides a valuable adjunct to
clinical and neuropathologic assessments. The report pro-
vides the histologic diagnosis and the results of the blinded
interpretation that allow calculation of standard predictive
parameters. The authors emphasized that even neuropathol-
ogy interpretation (at this point the gold standard for diag-
nostic assessment) is subject to variation due to sampling
variation.

These preliminary studies alone established a standard
anatomic MR imaging protocol for patients with suspected
glioblastoma including sequences that include T1 and T2
weighted imaging sequences and, in particular, acquisition
of imaging after the administration of gadolinium based con-
trast, and prior guidelines for the neuroradiologic assessment
of newly diagnosed glioblastoma have established these
recommendations [4]. The development of physiologically
based MR imaging sequences including diffusion and perfu-
sion weighted imaging (also termed dynamic susceptibility
contrast imaging) as well as magnetic resonance spectros-
copy, led to investigation of these sequences in the manage-
ment of patients with brain tumors. In particular, Moller-
Hartman et al. retrospectively considered 176 patients with
intracranial mass lesions, evaluating the potential utility of
MR spectroscopy in these patients [5]. This series included
23 low grade gliomas, 28 anaplastic astrocytomas and 39
glioblastomas. Choline/Creatine and NAA/Creatine ratios
were considered. These parameters were not independ-
ent predictors of tumor histology, but they did show some
degree of correlation with tumor grade. The authors con-
cluded that MRS data assisted the interpreter of anatomic
images in providing a correct diagnosis, increasing the rate
of correct diagnoses by 15.4% and decreasing the number of
incorrect diagnoses by 6.2%. These early studies suggested a
potential role for MRS in the evaluation of GBM, although
further studies have not yet established a clear role for the
technology in the evaluation of suspected GBM.

Perfusion weighted imaging is another useful tool
used to evaluate patients with brain tumors. Early stud-
ies such as one by Lev et al. prospectively considered
perfusion weighted imaging parameters in a series of

patients that included 9 low grade gliomas and 13 high
grade tumors [6]. The authors considered whether cerebral
blood volume, calculated as normal cerebral blood volume
(nCBV) could discriminate between high and low grade
gliomas and successfully discriminated between high and
low grade tumors with a cutoff value of 1.5. Numerous
additional studies have considered perfusion weighted
imaging, diffusion weighted imaging, and other imaging
sequences and their ability to discriminate GBM from
lower grade primary brain tumors. These studies were
extensively reviewed in the recent guidelines for the man-
agement of low grade glioma and are thus not repeatedly
outlined here [7].

While there are studies (as noted above) that suggest a
potential role for advanced imaging in delineation among
primary tumor types, discrimination between low and high
grade tumors can be established relatively well with ana-
tomic imaging alone. Clinicians have long recognized, how-
ever, that an MRI showing a solitary contrast-enhancing
tumor can be a glioblastoma, but also carries a differen-
tial diagnosis of metastasis as well as primary CNS lym-
phoma (PCNSL). Numerous studies over the past decade
have established a role for physiologic imaging sequences in
diagnosing GBM versus these other tumor types.

A total of seventeen studies specifically considered imag-
ing parameters in distinguishing GBM from brain metastases
and met the inclusion criteria for these guidelines. All but
one of these studies provides Class III data, and one pro-
vided Class II data [8]. Eight studies focused on perfusion
weighted imaging which has more recently been referred
to as dynamic susceptibility contrast (DSC) imaging. Four
studies considered diffusion weighted imaging, 3 utilized
DTI imaging methods, and 2 used arterial spin MRI meth-
ods. The last 2 studies considered MR spectroscopy and
amide proton transfer weighted MRI. Several studies con-
sidered more than one imaging method.

Cha et al. considered 43 subjects with a histopathologic
diagnosis of GBM (27) or metastasis (18) who underwent
DSC perfusion weighted imaging prior to surgery [9]. Peak
signal height and average signal recovery offered measures
that, in the enhancing tumor and peritumoral region offered
a probability that a tumor is not GBM with a specificity
of 100% and sensitivity of 69%. Subsequently Hakyemez
et al. retrospectively considered 48 subjects with primary
brain tumors including 20 GBM and 26 metastases to deter-
mine whether DSC imaging could differentiate gliomas from
metastases [10]. In these subjects, comparison of relative
cerebral blood volume (rCBV) from the peritumoral region
offered a statistically significant way to distinguish High
Grade Glioma (HGG) from metastasis. Using a cutoff value
of 0.46 for the peritumoral region, tCBV measures differ-
entiated high grade gliomas from metastasis with a sen-
sitivity and specificity of 77.3 and 96.2%. While original
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studies considering physiologic imaging focused on the solid
enhancing tumor when placing regions of interest (ROIs),
these studies identified signal changes in the peritumoral non
enhancing tissue that were different in infiltrating gliomas
as compared with solid metastases with a discrete tumor
margin [6].

Bette et al. reviewed GBM (n=165) vs brain metasta-
sis (n=129) utilizing DTI to determine whether fractional
anisotropy would help distinguish between GBM and brain
metastasis [11]. They found GBMs to have significantly
higher fractional anisotropy values in the contrast enhanc-
ing portion of the tumor. Yang et al. also utilized DTI images
to create a 3D morphologic analysis of the tumor surface to
differentiate between GBM (n=30) and metastasis (n=18)
[12]. Their method resulted in a 95.8% accuracy rate. Sko-
gen et al. performed texture analysis utilizing TexRAD
software on DTI imaging to show this software has an 80%
sensitivity and 90% specificity for differentiating between
GBM and metastasis [13].

Arterial spin MRI (ASL MRI) is a technique that meas-
ures tissue perfusion using a freely diffusible intrinsic tracer,
this method offers another way to assess tissue perfusion.
ASL MRI was utilized by Sunwoo et al. and Ganbold et al.
[14, 15]. Sunwoo et al. reviewed GBM (n=89) and metas-
tasis (n=39) and found increased peritumoral perfusion
to have the best discriminative power for differentiating
between the two pathologies [14]. Ganbold et al. utilized
ASL MRI to create a 3D analysis comparing high signal on
ASL with contrast enhancing regions [15]. They found GBM
to have a significantly higher difference and ratio between
high signal on ASL and areas of contrast enhancement in
comparison to metastasis.

Yu et al. explored the use of amide proton transfer
weighted MRI to establish parameters to analyze the peritu-
moral zone in order to distinguish between GBM and metas-
tasis [16].

Wang et al. considered DSC measures from the peritu-
moral region in 67 subjects with enhancing brain tumors
[17]. While this study did not provide cutoff values or sensi-
tivity and specificity, it further established the value of rtCBV
measures beyond the enhancing tumor margin in GBM diag-
nosis. This study also considered diffusion weighted imag-
ing metrics as well as patients with PCNSL. Server et al.
prospectively considered 61 subjects with enhancing tumors
(40 GBM, 21 metastases) in a 2011 series that established
that DSC measures, specifically rCBV from the peritumoral
region could accurately discriminate GBM from metasta-
sis [18]. While the reviewers in the study were not blinded
to histology, downgrading this study to Class III, the data
identified a cutoff value of 0.80 for the peritumoral region
that differentiated GBM from metastases with a sensitiv-
ity, specificity, PPV and NPV of 95%, 92%, 86% and 97%,
respectively.

@ Springer

Tsougos et al. considered 49 subjects with GBM (35)
and brain metastasis (14) prospectively to determine whether
DSC imaging was able to discriminate between these two
diagnoses [8]. In addition, the reviewers considered diffu-
sion weighted imaging (DWI) parameters as well as MR
spectroscopy (MRS) for the same diagnostic distinctions.
They found that peritumoral rCBYV ratios as well as NAA/
Cr, Cho/Cr and Cho/NAA ratios significantly differentiated
GBM from metastasis. Apparent diffusion coefficient (ADC)
and fractional anisotropy (FA) presented no significant dif-
ference between the groups. A cutoff of 1.7 for rCBV had
a sensitivity/specificity of 80%/94% for identifying GBM.
rCBV values were not corrected for leakage (no contrast
preload). Using a cutoff of 1.5 for NAA/Cr the peritumoral
ratio had a sensitivity/specificity of 78%/82%. A cutoft of
1.4 for Cho/Cr had a sensitivity/specificity of 89%/62%. A
cutoff of 1.1 for Cho/NAA had a sensitivity/specificity of
78%/93%. This study provided class II data supporting the
use of DSC and MRS imaging in differentiating GBM from
brain metastases.

Lu et al. evaluated dynamic contrast-enhanced MRI to
differentiate between GBM, PCNSL and Metastases [19].
Derived values included the volume transfer constant
9OK")  the flux rate constant between extravascular extra-
cellular space and plasma (K,,), the extravascular extracel-
lular volume (V) and the fractional plasma volume (V)
using the Tofts model. Mean K" value and V, value were
significantly higher in PCNSLs than in GBMs and MTs.
GBM and MT had no significant differences between them.
The AUC for K" in PCNSL vs GBM was 0.847 with a
sensitivity 81.2% and specificity 79%. V., AUC was 0.785
with a sensitivity of 81.2% and specificity of 65.8%. The
sensitivity and specificity for PCNSL vs MTs was 81.2%
and 81% respectively for K™ and 87.5% and 81% for V..

Further studies confirmed the ability of rCBV to differ-
entiate between GBM and metastasis. Goyal et al. evaluated
the most enhancing regions of tumors (18 GBM, 15 lym-
phoma, 13 mets, 10 anaplastic gliomas) and compared this to
co-registered DSC perfusion maps to assess cerebral blood
volume (CBV) [20]. CNS lymphomas was found to have sig-
nificantly lower mean rCBV compared to the other patholo-
gies. Mean rCBV was found to have the best threshold for
differentiating these malignant lesions. Neska-Matuszewska
et al. looked at additional parameters and agreed that rCBV
had the best ability to differentiate tumor type with max core
rCBV much lower in PCNSL and max peritumoral rCBV
much higher in GBM to distinguish from metastasis [21].

Four other class III studies also considered DWI in dis-
tinguishing between brain metastases and GBM. Wang
et al. found that in addition to the peritumoral rCBV mark-
ers noted above, ADC and FA from the enhancing tumor
region of interest differentiated between GBM and non-glio-
blastoma [17]. Kolakshyapati et al. found that nonenhancing
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peritumoral DWI is highly predictive of GBM when pre-
sent [22]. Saini et al. reviewed 100 patients (70 GBM and
30 PCNSL) using DWI, T1 perfusion, and susceptibility-
weighted imaging (SWI) [23]. They created a model with
90% sensitivity and 70% specificity in differentiating
between GBM and PCNSL.

Byrne et al. also considered DWI in brain metastasis and
GBM [24]. 28 patients with histologically proven GBM or
metastasis were studied retrospectively and DTI metrics
including MD and FA were considered to determine whether
tumoral or peritumoral diffusion metrics could aid in diag-
nosis. When MD and FA from the tumor and peritumoral
region were considered together, GBM could be reliably
distinguished from metastasis, although no sensitivity or
specificity data were calculated and cutoff values were not
suggested.

All of these studies together suggest a potential role
for DSC, DWI and MRS imaging in considering solitary
enhancing tumors when a diagnosis is uncertain. In particu-
lar, a preponderance of Class III data suggests that consider-
ation of the peritumoral region with these advanced imaging
studies can be useful in yielding a non-invasive diagnosis.
No individual study has been validated, however, as a reli-
able alternative to tissue diagnosis when available.

Not only did Wang et al. consider DSC and DWI for
discrimination of GBM from brain metastasis, but they
also considered PCNSL [17]. Importantly, in this study,
while both DSC and DWI parameters could distinguish
GBM from non-GBM (metastasis or PCNSL), neither
sequence was, in this study, able to distinguish between
metastasis and PCNSL. A total of 8§ studies meeting our
inclusion criteria more specifically addressed comparison
of GBM and PCNSL. In 2012, Okada et al. retrospectively
considered 22 patients with an enhancing brain tumor
[25]. All patients had undergone dynamic PET studies
prior to surgery with 18F-FDG and 11C-MET to deter-
mine whether either of these PET tracers could distinguish
between GBM and PCNSL. In this study, the SUVmax
value for FDG PET and the ASUVmax for C-MET PET
measurements were useful in distinguishing between GBM
and PCNSL. With a cutoff value of 1.17, the ASUVmax
for 11C-MET distinguished GBM from PCNSL with
100% sensitivity and specificity. Using a cutoff point of
12 for SUVmax for FDG PET, the diagnostic accuracy
was 92% sensitivity and 86% specificity. While many clini-
cal centers may not have routine availability for dynamic
PET studies and, in particular, 1 1C-MET tracers, this is a
study that does suggest a potential benefit to PET tracers
in the preoperative evaluation of patients with suspected
glioblastoma. In addition, just as DSC imaging was found
to be of value in discriminating GBM from brain metasta-
ses, Toh et al. considered DSC parameters in 35 subjects
with GBM (20) and PCNSL (15) in a retrospective study

[26]. GBM demonstrated significantly higher perfusion
parameter values including CBV and CBV with leakage
correction when data were acquired with contrast preload
and lower K2 compared with PCNSL. A cutoff value
of 1.88 for uncorrected CBV ratio (in enhancing tissue)
discriminated GBM from PCNSL with a sensitivity and
specificity of 100% and 87%, and a cutoff value of 3 for
corrected CBV ratio (in enhancing tissue) discriminated
GBM from PCNSL with a sensitivity and specificity of
90% and 93.3% respectively. Also using dynamic contrast
imaging and DWI MRI, Lu et al. determined that mean
ADC provided the best threshold to distinguish primary
CNS lymphoma from GBM [27]. A rADC_,, threshold
of 1.7 indicated PCNSL with a specificity of 78% and sen-
sitivity of 75%.

Choi et al. also utilized dynamic contrast MRI as well
as ADC to differentiate between PCNSL and GBM [28].
Initial area under the curve (IAUC) and ADC values were
higher in GBM than in PCNSL. By combining p90 of
TAUC30 with p10 of ADC, the diagnostic performance
was improved to an AUC of 0.886, compared to that of
pl0 of ADC alone (AUC =0.744) and p90 of TAUC30
(AUC=0.789). IAUC is a potentially useful imaging bio-
marker with added diagnostic value to ADC in the dis-
crimination of PCNSL from atypical GBM.

Ko et al. evaluated ADC measurements in tumor
necrosis, the most strongly-enhancing tumor area, and
the peritumoral edema [29]. They were able to differ-
entiate between GBM and PCNSL with 90% sensitivity
and 86% specificity. Lin et al. also utilized ADC imaging
which they coregistered to contrast enhancing regions and
FLAIR hyperintense regions [30]. The enhancing region
of PCNSL had significantly lower ADC mean, relative
ADC mean and relative 90" percentile values for plasma
volume. They found that mean ADC provided the best
threshold to distinguish PCNSL from GBM. In their study,
ADC alone was superior to dynamic contrast-enhanced
MR perfusion in differentiating PCNSL from GBM. Xiao
et al. performed 3D texture and shape analysis to assess
GBM vs PCNSL [31]. Various selected parameters pro-
duced sensitivities ranging from 70 to 83.3% and specifici-
ties ranging from 71.4 to 90.5%. They found the support
vector machine models produced the best discrimination
potential between GBM and PCNSL.

Yamashita et al. used IVIM MR imaging data including
perfusion fraction and diffusion coefficient to discriminate
between GBM and PCNSL [32]. They found that fraction
and diffusion coefficients were significantly higher for GBM
patients while the standard uptake value with FDG-PET was
significantly lower for GBM in comparison to PCNSL. Per-
fusion fraction max cutoff was 12.4% showing 79.3% sensi-
tivity, 69.2% specificity, and 76.2% accuracy.
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While the number of included studies considering GBM
and PCNSL are smaller than those considering GBM and
metastases, all of these studies, taken together, affirm the
potential for physiologic imaging, in particular DWI and
DSC sequences, and also potentially MRS and PET stud-
ies, in the discrimination of GBM from nonglial enhancing
brain tumors.

Synthesis of results: diagnostic specificity

MRI remains a mainstay in the initial evaluation and diag-
nosis of patients with suspected GBM. A minimum of T2
weighted, FLAIR and pre- and post-gadolinium contrast
enhanced T1 weighted imaging is recommended. CT pro-
vides baseline information regarding location and may
provide additional information such as the presence of
calcification or hemorrhage. Recent studies have shown
that the addition of diffusion and perfusion weighted MRI
can help to distinguish GBM from other tumor types (e.g.,
primary CNS lymphoma or metastases). Several series
offer Class III evidence to support the use of magnetic
resonance spectroscopy (MRS), diffusion tensor imaging
(DTI) and nuclear medicine modalities (PET 18F-FDG
and 11C-MET) to offer additional diagnostic certainty.

Further study into current diagnostic studies have been
completed since previous guidelines as well as technologi-
cal advances in evaluating current imaging. Advances in
computer learning and analysis of texture and shape have
also started to emerge as a possibility for future use in
diagnosis.

Imaging and prognosis—glioblastoma

A total of eight studies met the inclusion criteria suggest-
ing evidence to support the use of imaging in predicting
the clinical behavior, or prognosis, for patients with GBM.
Only one of these studies was classified as Class II [33].
The others were all downgraded to class III, because of a
lack of blinding and a lack of a test and validation data set,
with individual studies including Hirai et al. and Shankar
et al. additionally downgraded due to small sample size
(< 100) and short follow up (<1 year), respectively [34,
35]. These imaging studies considered a range of imag-
ing data types, including anatomic imaging features, DSC,
DWI, and PET markers. In addition, a single 2016 study
(the sole class II study) considered modeling methods to
integrate multiparametric imaging data for prediction of
clinical outcome. These studies suggest that imaging may
play a role in prediction of clinical outcome that supple-
ments traditional clinical and histopathological markers.
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Pope et al. considered 15 anatomic imaging variables
in 153 patients with HGG (n=43) and GBM (n=110)
to determine whether any of these imaging variables was
predictive of clinical outcome [36]. The presence of edema
(HR =1.6), satellite tumors (HR =1.7) and multifocality
(HR =4.3) associated with shorter survival and the pres-
ence of non-contrast enhancing tumor (HR =0.55) associ-
ated with longer survival. The authors identify non-con-
trast enhancing tumor as discrete from cerebral edema and
as a novel, independent predictor of outcome. McGarry
et al. also showed that contrast enhancement was sig-
nificantly indicative of OS [37]. They created radiomic
profiles maps looking at 4 areas: (1) within the contrast-
enhancing lesion only, (2) within the FLAIR hyperinten-
sity only, (3) within the union of the FLAIR hyperintensity
and contrast-enhancing lesion, and (4) within the FLAIR
hyperintensity excluding contrast enhancement. Five pro-
files were found to be predictive of prognosis. Four of the
five of these were contrast enhancing and hyperintense
on FLAIR imaging. Additional investigators have consid-
ered anatomic features and clinical prognosis including
Baldock et al., who prospectively considered 243 patients
with GBM to determine whether a mathematical model
for tumor invasiveness (based upon T1 and T2 weighted
imaging) could be predictive of survival [38]. Reviewers
were not blinded to survival data. The authors’ mathemati-
cal model defines tumors as diffuse or nodular based upon
imaging features that define tumor invasiveness. Patients
with more diffuse tumors showed no survival benefit
even from gross total resection, while those with nodular
tumors showed a significant benefit with a median survival
benefit of over 8 months compared to subtotally resected
tumors in the same cohort. Traditionally, extent of resec-
tion has been used as a strong predictor of survival. This
novel imaging method suggests that there may be a patient
cohort for whom, even if a complete resection of enhanc-
ing tumor were possible, it might not provide a survival
benefit.

Anatomic imaging features have been increasingly stud-
ied. Wangaryattawanich et al. considered 94 patients with
GBM [39]. From this data set, univariate analysis suggested
10 imaging features that might be associated with overall
survival, and multivariate analysis showed that only tumor
enhancing volume was independently predictive of overall
survival. On the other hand, Kickingereder et al. found 11
radiographic features to be useful in dividing patients into
low- or high-risk for PFS and OS groups [33]. Chaddad
et al. and Wangaryattawanich et al. both utilized TCIA (The
Cancer Imaging Archive) in order to assess data from mul-
tiple institutions [39, 40]. Chaddad et al. utilized TCIA data
to compare post-contrast TIW imaging and T2 weighted
FLAIR in 40 GBM patients [40]. They defined three GBM
phenotypes: necrosis, active tumor and edema/invasion,
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which were then segmented. A set of shape features were
extracted slice wise from each phenotype region and com-
bined to describe the three-dimensional shape of the pheno-
types. The survival analysis based on the Kaplan—Meier esti-
mator identified three features derived from necrotic regions
(i.e. eccentricity, extent and solidity) that were significantly
correlated with overall survival.

Lasocki et al. looked specifically at multifocal and multi-
centric GBM and found patients with multiple lesions had a
nonsignificant worse survival (median 176 days, compared
to 346 days p=0.253) [41]. However, these tumors more
frequently involved deep structures (p <0.001) and the pos-
terior fossa (p=0.045), both of which were associated with
significantly worse survival.

Another study considering measures of tumor volume
and clinical prognosis was that of Suchorska et al. In this
study, the authors prospectively considered 79 patients
with newly diagnosed GBM and evaluated them with 18F-
FET PET prior to and after surgical intervention [42]. The
authors identified an imaging marker of biological tumor
volume (BTV), defined as the region of tissue with evidence
of FET uptake. Regions of BTV measured for all subjects
prior to radio-chemotherapy (irrespective of extent of surgi-
cal resection) were independently predictive of overall sur-
vival. Patients with smaller BTV had significantly longer
PFS and OS independent of MGMT methylation status and
clinical variables. A cutoff volume value of 9.5 cc had a
sensitivity and specificity of 64% and 70%, respectively, to
predict improved survival in the group with smaller BTV.
Median OS (PFS) was 17.5 (8.8) months for patients with
smaller BTV versus 10.7 (3.9) months for patients with
larger BTV. The authors suggested that using FET PET to
identify a biological tumor volume could justify a return to
surgery for repeat resection prior to radiochemotherapy if it
was felt that residual BTV could be brought below 9.5 cc of
residual tumor. Bekaert et* al utilized PET imaging ([18F]-
FMISO PET) and MRI to calculate maximum standardized
uptake values and hypoxia volume.[18F]-FMISO PET was
closely linked to tumor grade—higher uptake was observed
in GBM. The expression of biomarkers for hypoxia and
angiogenesis were significantly higher in [18F]-FMISO PET
uptake groups. Patients without [18F]-FMSIO uptake had
longer survival times.

In contrast with diagnostic and prognostic studies in
LGG, where numerous studies have considered the role of
DSC imaging, in glioblastoma, only one study met the inclu-
sion criteria for consideration of DSC imaging as a marker
of clinical prognosis [7]. Hirai et al. considered a total of 49
subjects with GBM including 31 with GBM, evaluating pre-
treatment DSC imaging [34]. In patients with GBM, rCBV
was independently predictive of clinical outcome. With a
cutoff value of 2.3, low rCBV was associated with a 67%
2-year survival rate, while elevated rCBV was associated

with a 9% 2-year survival. Perfusion measures were cal-
culated without contrast preloading in this 2008 study. It is
important to recognize that more recent studies considering
DSC imaging often derive rCBV values after contrast pre-
loading, so for clinicians giving consideration to specific
cutoff values, this must be taken into account.

Three studies considered DWI metrics and clinical out-
come in GBM. Pope et al. retrospectively analyzed data
from 121 patients with GBM to determine whether diffu-
sion markers corresponded to clinical outcome [44]. In this
cohort, 59 patients were treated up front with Bevacizumab
(Bev) and 62 with standard radiochemotherapy. Imaging
analyses were stratified by treatment groups. In the control
group there was no association between ADC histogram
analyses and clinical outcome. In patients treated with Beyv,
however, ADC(L) measures corresponded to PFS and OS.
The ADC(L) measure was taken from the mean ADC of the
lower curve of the histogram, and a cutoff value of 1200
gave a median PFS of 459 days, versus 315 days. Subjects
with lower ADC(L) had a longer PFS in patients, though
only in the subgroup treated with Bev. The specific method
used for diffusion histogram analysis and the unusual sub-
group of patients treated up front with Bev makes it more
challenging to extrapolate these results to a more general
GBM patient population.

Shankar et al. considered another cohort of GBM sub-
jects, identifying 84 patients with newly diagnosed GBM
who had preoperative DWI sequences [35]. In this patient
population, the median normalized apparent diffusion coeffi-
cient (nADC)within the enhancing tumor volume correlated
with clinical outcome, measured as survival at 90 days after
diagnosis. With a cutoff value of 0.75, patients whose tumors
had elevated ADC values had shorter overall survival. The
relatively short follow up of this study is a limitation, how-
ever the study does suggest a rationale for consideration of
nADC as a potential marker for prognosis. Boonzaier et al.
performed a retrospective review of 43 patients who under-
went conventional, diffusion-weighted, perfusion-weighted,
and spectroscopic MRI [45]. Overlapping low-ADC and
high rCBYV, regions of interest (ROI) were generated using
pre- and post-contrast scans. The volume of ADC-rCBV
ROI in nonenahncing regions significantly contributed
to a multivariant model for progression free (hazard ratio
1.454; P=0.017) and overall survival (hazard ratio 1.132;
P=0.026). Volumetric analysis of ADC-rCBV ROIs in non-
enhancing regions can thus be used to identify patients with
poor prognosis after accounting for known confounders of
GBM outcome.

Each of these studies suggests a potential utility to
both anatomic and advanced imaging methods in stratify-
ing patients with GBM based upon imaging markers with
regards to their expected clinical response to treatment. The
studies have considered, typically, imaging markers on an
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individual basis and then performed secondary multivariate
analyses. Increasingly, imaging researchers are recogniz-
ing the potential value for more complex modeling meth-
ods, including application of machine learning techniques
to studies of imaging and neuro-oncology. Kickingereder
et al. have presented a study considering whether a mul-
tiparametric imaging analysis method could establish a radi-
omic profile that allows prediction of clinical outcome in
patients with newly diagnosed GBM [33]. In a series of 119
patients evaluated retrospectively, a total of 12,190 imaging
features were extracted from anatomic and physiologic MR
imaging sequences and considered, using machine learning
techniques, to determine which features were, collectively,
most predictive of clinical outcome. While the researchers
were not blinded to clinical outcome, patients were divided
into a "discovery" cohort and a "validation" cohort, provid-
ing a multiparametric imaging marker for clinical prognosis
in patients with GBM. Ultimately, 11 imaging features were
identified that, together, were predictive of PFS and OS.
The performance of this model was further improved when
combined with clinical data variables. This class II study is
an example of the potential for the application of complex
computational analyses to imaging studies in neuro-oncol-
ogy. This study, combined with the other studies showing
potential benefit to anatomic and advanced imaging methods
in prognostication for patients with GBM, supports the con-
tinued acquisition of these advanced imaging sequences, at
least as a part of organized clinical trials. While it may not,
yet, be clear how to apply these imaging data to individual
clinical cases, there is clear evidence to support a potential
benefit to these imaging sequences in the clinical manage-
ment of patients with GBM in years to come.

Synthesis of results: prognosis

A total of eight studies met the inclusion criteria suggesting
evidence to support the use of imaging in predicting the
clinical behavior, or prognosis, for patients with glioblas-
toma. However, only one of these studies was classified as
class II [33]. The others were all downgraded to class III
because of a lack of blinding and a lack of a test and valida-
tion data set, with individual studies including Hirai et al.
and Shankar et al. additionally downgraded due to small
sample size and short follow up, respectively [34, 35]. These
imaging studies considered a range of imaging data types.
While they suggest that imaging may play a role in predic-
tion of clinical outcome that supplements traditional clinical
and histopathological markers, these imaging modalities are
not validated well enough, or in common enough use, to sup-
port a practice guideline recommendation regarding imaging
and prognosis in primary glioblastoma.
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Imaging and molecular tumor markers—
glioblastoma

Despite many advances in the understanding of glioblas-
toma imaging, histopathology, and clinical treatment, the
prognosis for patients with this tumor remains dismal. Pro-
gress in genetic profiling of these tumors has, however,
increased our understanding of the heterogeneous nature
of this tumor, even at the molecular level. As both imaging
and genetic profiles are recognized to be heterogeneous,
even within a single tumor, increasingly researchers are
recognizing the potential for correlation of imaging with
genomics and molecular tumor behavior [46]. Whether
imaging can be used to predict the molecular profile of
GBMs is currently under investigation, although there is
still insufficient data to recommend their widespread use
in clinical practice. A total of fourteen studies met the
inclusion criteria for our analysis offering preliminary
data suggesting a potential correlation between imaging
markers and biological tumor behavior (with correlations
made between both individual molecular markers as well
as defined molecular subtypes). All of the included studies
were class III.

Just as DSC imaging showed relevance in clinical diag-
nostic specificity for GBM, Jain et al. considered whether
addition of rCBV data could further clarify correspondence
of molecular tumor subtype with clinical survival [47]. In
this series of 50 subjects with GBM taken from the Cancer
Genome Atlas (TCGA), rCBV (max) measurements were
found to be independently predictive of overall survival.
The combination of rCBV data with previously identified
genomic data, specifically the Verhaak molecular GBM
subtype, further clarified the correspondence of rCBV
with overall survival. This early study integrates advanced
imaging data analysis and molecular analysis, but does not
directly correlate the two.

By contrast, Romano et al. reviewed 47 patients with
histologically proven GBM, all of whom had undergone
DWI within one week prior to surgery [48]. MGMT pro-
moter methylation status was also identified. ADC measures
were correlated with MGMT methylation status as well as
clinical outcome. Various ADC measurements were evalu-
ated. Only rADC(min) was found to correlate to molecular
subtype (MGMT methylation status) and clinical outcome.
A cutoff value of 0.8 for ADC(min) distinguished MGMT
methylation status with a sensitivity and specificity of 84%
and 91%. Overall survival was 14.8 vs 9.8 months in patients
with high versus low ADC(min) values. DWI metrics were
also considered by Young et al. in combination with ana-
tomic imaging measures [49]. In 147 consecutive patients
with GBM, these imaging measures were correlated with
epidermal growth factor receptor (EGFR) amplification
status. ADC measurements were statistically significantly
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different between patients with EGF receptor amplification
and those without. Cutoff values and sensitivity/specific-
ity were not provided. Aside from restricted diffusion, no
anatomic imaging features corresponded with EGF receptor
status. Korfiatis et al. reviewed co-occurrence and run length
texture features to predict MGMT methylation status [50].
A support vector machine (SVM) based classifier using four
texture features (correlation, energy, entropy and local inten-
sity) originating from T2-weighted images have a sensitivity
of 0.803 and a specificity of 0.813 at predicting MGMT
methylation status.

In another series, Naeini et al. reviewed MRI studies
from 46 patients with histologically confirmed GBMs ret-
rospectively [51]. Anatomic imaging measures including the
volume of contrast enhancement and volume of T2/FLAIR
signal were measured and correlated to molecular subtypes
of GBM. A volume ratio comparing T2 hyperintensity to
contrast enhancement was found to be significantly lower
in the mesenchymal (MES) subtype of GBM. This could
be used to stratify clinical prognosis as well. Using a cut-
off ratio of 1.0, the T2/FLAIR: CE ratio had a sensitivity/
specificity of 100%/60% for identifying the mesenchymal
subtype. With a cutoff value of 2.3, the sensitivity/specific-
ity was 83%/87%.

Macyszyn et al. also considered correlation of imaging
markers with molecular GBM subtype in a cohort of 105
subjects with histologically proven GBM [52]. In this series,
however, a machine-learning algorithm was employed to
evaluate 60 imaging features and demonstrate imaging pat-
terns that would be predictive of molecular subtype and/
or clinical prognosis. A machine learning technique was
employed to evaluate imaging features from anatomic and
physiologic imaging sequences and evaluate a training set
and then a test set of patients. This machine-learning model
was able to adequately predict survival 80% of the time and
identify one of four molecular subtypes with 76% accuracy.

Recognizing that molecular tumor subtypes can be pre-
dictive of outcome, Yamashita et al. retrospectively iden-
tified 66 Patients with GBM to determine whether MR
imaging markers corresponded with the molecular imaging
diagnosis of IDH1 wild type (55) or mutant (11) status [32].
Anatomic and physiologic imaging parameters were cor-
related with histologic subtype. Absolute and relative CBV
within the enhancing tumor as well as necrosis volumes were
found to be significantly higher in patients with wild type
IDH1 compared with those with mutant IDH1. No difference
was found in ADC values between the two groups.

Grossman et al. evaluated 141 GBMs assessing MRI
volumetric features including necrotic core(NE), contrast
enhancement (CE), tumor volume on post-contrast scans
(TB), and tumor volume based on edema with T2-FLAIR
[53]. They then correlated this to molecular pathways and
found NE and TB were enriched with immune response

pathways and apoptosis. CE was increased with signal trans-
duction and protein folding. ED was increased for homeo-
stasis and cell cycling. CE was the strongest predictor of
overall survival.

Heiland et al. reviewed 20 GBMs to identify correla-
tions between metabolites from proton MR spectroscopy
and genetic pathway activity in GBM [54]. The metabo-
lites nNAA, nCr, and nGlx correlate with a specific gene
expression pattern reflecting the previously described sub-
types of GBM. Also, high nNAA was associated with bet-
ter clinical prognosis, whereas patients with lower nNAA
revealed a shorter progression-free survival (PFS).

Zinn et al. utilized diffusion-weighted sequences as well
as post contrast TIWI and FLAIR to define proliferative
vs necrotic regions and edema/invasion respectively and
correlated this to miRNA expression profiles [55]. Patients
with restricted diffusion phenotypes within peritumoral
FLAIR regions were found to have distinct gene expres-
sion and miRNA profiles compared to patients with facili-
tated diffusion. These genomic networks were found to be
associated with increased cell migration, invasion, chemo-
taxis and cell movement.

Bosnyak et al. evaluated 21 newly diagnosed GBM
patients who underwent presurgical MRI and PET scan-
ning with alpha[C-11]-L-methyl-tryptophan (AMT) [56].
They were assessed for EGFR amplification and MGMT
methylation. EGRF amplification was associated with
lower T1 postcontrast volume, lower T1 postcontrast/T2
volume ratio and lower T1 postcontrast/PET volume ratio.
MGMT methylation correlated to lower metabolic volume
on PET and lower tumor/cortex AMP uptake ratios.

Cho et al. evaluated for branched-chain amino acid
transaminase 1(BCAT1) levels [57]. Increased BCAT1 has
been associated with tumor growth and disease progres-
sion. BCAT1 significantly correlated with the mean and
95th percentile normalized cerebral blood volume (nCBV)
as well as the mean ADC based on FLAIR images. Nor-
malized CBV from contrast enhanced T1WI also had a
significant correlation with BCAT1 levels. Lower levels
for BCAT1 correlated to longer progression free survival
times. High BCAT1 correlates to high CBV and low ADC
as well as poor prognosis.

Kanas et al. used segmentation and registration software
to perform quantitative analysis of 86 treatment-naive GBM
[58]. Using machine learning to build multivariate predic-
tion models, the MGMT promoter methylation status was
able to be predicted with 73.6% accuracy. The edema/necro-
sis volume ratio, tumor/necrosis volume ratio, edema ratio,
tumor location, and enhancement were all significant vari-
ables with respect to MGMT promotor methylation status.
Han et al. also evaluated predicting MGMT promotor meth-
ylation status and found that increased ADC (p<0.001) and
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decreased rCBF (p <0.001) were associated with MGMT
promoter methylation.

Han et al. investigated the value of features from struc-
tural and advanced imaging to predict methylation of
MGMT promotor status [59]. Significantly increased ADC
value (P <0.001) and decreased rCBF (P <0.001) were asso-
ciated with MGMT promoter methylation in primary GBM.
The ADC achieved the better predicting efficacy with a sen-
sitivity of 81.1% and specificity of 82.5%. Relative CBF had
a sensitivity of 75.0% and specificity of 78.4%. The combi-
nation of tumor location, necrosis, ADC and rCBF resulted
in the highest AUC of 0.914.

Synthesis of results: molecular markers

The role of various MRI sequences including DWI and per-
fusion studies have been explored for their ability to predict
molecular tumor subtypes. Correlation with MGMT muta-
tion status, EGFR amplification and IDH 1 mutation were
explored. This area of focus was not previously discussed in
the former guidelines. While these studies are all prelimi-
nary and none offer evidence above the class III level, each
offers evidence demonstrating correlations between imag-
ing markers and tumor molecular biology. Collectively, the
studies support the potential utility for imaging markers
in the clinical management of glioblastoma. Further large
scale studies will be required to collect enough data in order
to extrapolate these methods to clinical practice. Thus at
this time no specific recommendations regarding the use
of imaging to predict molecule markers can be made. The
committee will continue to monitor progress in this area and
address this subject in future updates. The integration of
machine learning methods for data analysis is almost certain
to allow more complex analyses and present relevant imag-
ing markers in the future.

Discussion

The introduction of first CT, and subsequently MR imaging,
has transformed the way we diagnose and treat GBM. It has
allowed earlier identification of asymptomatic lesions and
is critical for pre-surgical diagnosis, intraoperative manage-
ment, and ultimately follow-up after treatment with surgery,
radiation and chemotherapy. Anatomic imaging remains crit-
ical to the identification of these tumors, but increasingly,
advanced imaging methods, including physiologic imaging,
have impacted the way we manage this tumor type.

With respect to anatomic imaging, if a lesion is suspected
to be GBM, an MRI that includes anatomic T2, FLAIR and
T1 weighted images, along with T1 weighted images acquired
after the administration of gadolinium based contrast is
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necessary to begin to characterize a lesion as a possible GBM.
In further evaluation of a suspected GBM, significant class III
evidence and one series with class II evidence suggest a benefit
to the addition of diffusion and perfusion weighted sequences
to aid in discriminating GBM from other tumor types, most
commonly primary CNS lymphoma and brain metastases. In
the unusual situation where surgical intervention is not recom-
mended, these imaging sequences can be considered as sur-
rogate markers. In preparation for surgery, having diagnostic
information that allows clarification of a differential diagnosis
can be useful, and in the unusual situation where surgical inter-
vention is not possible, these imaging sequences can support
a clinical diagnosis.

Performance of MR spectroscopy and PET imaging has
been suggested to have relevance in some preliminary pilot
studies, but there is not enough evidence to recommend the
inclusion of either in standard diagnostic imaging protocols
at this time as further investigation as to best metabolite
ratios for consideration as well as best PET tracers and their
role need to be further investigated.

With respect to consideration of advanced imaging as a
prognostic imaging marker in GBM, the literature has exam-
ples of class III evidence that suggest a role for DWI and
PWI in distinguishing different classes of GBM in terms of
prognosis, but these imaging parameters, at this time, can-
not be relied upon in isolation, as markers of prognosis for
patients. In settings where PWI and DWTI are obtained as a
part of a routine tumor imaging protocol, increasingly inves-
tigators are considering methods where complex imaging
data can be considered mathematically to offer prognostic
information that further clarifies histological data. If these
sequences are not available preoperatively, this does not,
however, impact clinicians’ ability to adequately manage
patients with GBM.

Overall conclusions

In conclusion, for patients with a suspected GBM, it is
a class II recommendation that the minimum magnetic
resonance imaging (MRI) exam should be an anatomic
exam with both T2 weighted, FLAIR and pre- and post-
gadolinium contrast enhanced T1 weighted imaging. With
respect to prognostication, several class III series support
the addition of diffusion and perfusion weighted MR imag-
ing in the assessment of suspected GBM, for the purposes
of distinguishing GBM from other tumor types (e.g., pri-
mary CNS lymphoma or metastases). There is also class
III evidence to support magnetic resonance spectroscopy
(MRS) and nuclear medicine (PET 18F-FDG and 11C-
MET) may provide additional support for the diagnosis of
GBM. Likewise, several class III studies have evaluated the
use of imaging modalities to predict the molecular profile
of GBM. At this time there is still insufficient data to make
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clear recommendations regarding the role of imaging for the
prognostic stratification or prediction of molecular charac-
teristics of tumors.

Limitations and bias

Importantly, with consideration of all of these imaging
sequences, differences in methods for image acquisition,
processing and analysis limit the ability to synthesize data
across studies. Differences in scanner type, in image acqui-
sition protocols, and in analysis methodologies may impact
the quantitative measures obtained for different imaging
parameters; this may account for some of the differences
seen in threshold values, particularly in DWI and PWI meas-
ures. Larger, multi-site studies considering these markers as
indicators of diagnosis and of prognosis will be beneficial
(and are critical) to the standardization and integration of
advanced imaging parameters into clinical practice. Many of
the included manuscripts were limited by small sample size
and retrospective nature of review. We also recognize the
risk of selection bias upon initial review of the 4493 articles.

Key issues for future investigation

Ultimately, it is reasonable to consider perfusion and diffu-
sion weighted imaging markers in larger, multi-site studies
of prognosis and diagnostic specificity in GBM. Prospec-
tive studies considering these sequences in larger popula-
tions may lead to series that allow for class I diagnostic or
prognostic evidence for this population. Similarly, in these
larger series, consideration of multiparametric imaging mod-
els as methods to allow diagnostic specificity, prognostica-
tion, and correlations with molecular tumor subtype offer
the potential for innovative methods for the integration of
advanced imaging methods into glioblastoma management.
Ultimately, this approach may also be reasonable for PET
and MRS parameters, although additional studies still need
to be done in smaller cohorts to identify the best PET tracers
or specific MRS parameters to be chosen for integration into
larger scale GBM trials.

Continued evaluation of imaging characteristics using
DSC, DWI and PET are needed to further clarify their role
in determining prognosis. Larger multi-center studies would
help to delineate this. Certainly the use of computer learning
models that are able to perform complex analysis of large
data sets will likely advance this area of interest.

Finally, both anatomic and advanced imaging methods
are increasingly being considered as investigators evaluate
radiogenomic profiling of glioblastomas. While there is only
preliminary evidence linking individual and multiparametric

imaging markers to molecular GBM subtypes, as both
imaging technology and methods for complex data analysis
expand, such as computer learning, this will further develop
the understanding of the use of imaging to classify GBM
molecular subtypes and mutations. The integration of imag-
ing markers as secondary endpoints in larger clinical trials
will foster their ultimate translation to standard aspects of
the management of patients with GBM.
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