

Improvement of verbal fluency in patients with diffuse brain injury over time

Ana Luiza Zaninotto BA; Wellingson S. Paiva MD PhD; Almir F. Andrade MD, PhD; Robson Luis Amorim MD; Vinicius P Guirado MD; Leonardo Moura Sousa Jr MD; Iuri S Neville MD; Beatriz Baldivia BA; Monica Domiano Núñes BA; Mara Cristina Souza Lucia PhD; Manoel Jacobsen Teixeira

Division of Neurosurgery

Introduction

Diffuse axonal injury (DAI), a common cause of neurological sequelae in patients with traumatic brain injury (TBI), is considered one of the most prevalent forms of primary neuronal injury in patients with severe TBI. Cognitive deficits induced by DAI can persist over time, especially following moderate or severe injuries. The aim of the present study was to compare verbal fluency performance at 6 and 12 months after the trauma in a same group of patients with diffuse axonal injury.

Methods

Eighteen patients with moderate to severe DAI and 17 healthy volunteers were enrolled. All participants had sustained a TBI at least 6 months prior to the start of the study, were between 18-50 years, and had at least 4 years of education. The Verbal Fluency Test (VF) was administered within an extensive neuropsychological battery test. We evaluated the same patients at 6 months (DAI group) and 1 year (DAI2 group) and compared the results of neuropsychological tests with a control group of healthy volunteers who were matched for sex, age, and educational level.

Results

In comparison to controls, an independent samples t-test revealed that the DAI1 group produced significantly fewer words. DAI 2 group produced significantly more semantic words than DAI 1 (p < 0.05), and demonstrated a trend towards the production of more clusters for letter A (p = 0.09) and total word generated in phonemicologic teste (p = 0.09). No significant differences were observed between DAI 2 and the control group in the total number of words generated in phonetic FAS or semantic fluency scores.

Learning Objectives

Understanding changes in verbal fluency in patients with TBI and LAD assist in the management and recovery of patients.

References

Vakil E. The effect of moderate to severe traumatic brain injury (TBI) on different aspects of memory: a selective review. J Clin Exp Neuropsychol. 2005;27(8):977-1021.

Wilson BA, Watson PC, Baddeley AD, Emslie H, Evans JJ. Improvement or simply practice? The effects of twenty repeated assessments on people with and without brain injury. J Int Neuropsychol Soc. 2000;6(4):469-79.

Bercaw EL, Hanks RA, Millis SR, Gola TJ Changes in neuropsychological performance after traumatic brain injury from inpatient rehabilitation to 1-year follow-up in predicting 2-year functional outcomes. Clin Neuropsychol. 2011;25(1):72-89.

Dikmen SS, Machamer JE, Powell JM, Temkin NR. Outcome 3 to 5 years after moderate to severe traumatic brain injury. Arch Phys Med Rehabil. 2003;84(10):1449-57.

Dikmen SS, Corrigan JD, Levin HS, Machamer J, Stiers W, Weisskopf MG. Cognitive outcome following traumatic brain injury. J Head Trauma Rehabil. 2009;24(6):430-8

Conclusions

The present findings may be useful in the construction of a management plan for long-term

Variable	Controls (n=17)		DAI (n=18)		
	Mean	(SD)	Mean	(SD)	
Age (years)	32.17	(7.94)	27.05	(9.13)	
Education (years)	9.7	(2.88)	10	(3.01)	
Sex (male %)	65		83.3		

Patients	Trauma mechanism	Glasgow	DAII (days	DAI2 (days after trauma)	
			after trauma)		
I	Motorcycle accident	3	218	346	
2	Motorcycle accident	7	161	435	
3	Motorcycle accident	6	173	446	
4	Car accident	4	182	412	
5	Motorcycle accident	8	166	437	
6	Fall	6	187	453	
7	Motorcycle accident	8	201	385	
8	Motorcycle accident	5	160	377	
9	Motorcycle accident	6	213	378	
10	Motorcycle accident	9	185	354	
H	Car accident	7	179	473	
12	Car accident	9	223	384	
13	Being run over	6	223	389	
14	Being run over	10	174	390	
15	Motorcycle accident	6	227	388	
16	Fall	8	178	423	
17	Car accident	6	182	422	
18	Motorcycle accident	5	211	397	

Table 3 Verbal f	luency performance of he	althy controls and	DAI patients				
Fluency test	Variable	Controls (n=17)	(SD)	DAII (n=18)	(SD)	DAI2 (n=18)	(SD
		, ,					
Phonemic	Words generated	27.4	(9.1)	21.1	(8)	24.1	(6.8)
	Mean switches	18.9	(8.3)	16.1	(7.5)	17.9	(5.1)
	Mean cluster size	1.76	(1.3)	1.19	(1)	1.94	(1.3)
	Total errors	3.6	(2.5)	4.9	(3.7)	4.5	(3)
Semantic	Words generated	15.4	(4.7)	12.8	(4.5)	14.4	(3.7)
	Mean switches	10.6	(4.7)	7.4	(3.8)	9.2	(3.8)
	Mean cluster size	1.5	(1.3)	1.3	(1)	1.4	(1)
	Total errors	0.24	(0.4)	0.39	(0.8)	0.44	(0.6)