

M5: The Miami Model for MVC Morbidity and Mortality

John Paul George Kolcun BS; Brian R. Covello; Joanna Elizabeth Gernsback MD; Iahn Cajigas MD, PhD; Jonathan R. Jagid

MD

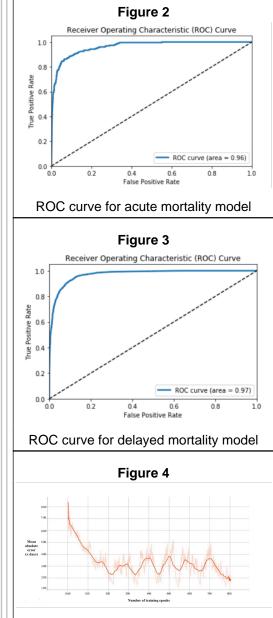
Department of Neurological Surgery

& Jackson Memorial Hospital Ryder Trauma Center,

University of Miami Miller School of Medicine

Introduction

Motor vehicle collisions (MVC) account for 30-40,000 deaths and 29% of emergency department visits annually in the United States. We recently applied machine-learning tools for the first time to predict clinical outcomes following MVC.


Methods

We queried two prospectively collected databases maintained at the Jackson Memorial Hospital Ryder Trauma Center: i) The American College of Surgeons National Trauma Data Bank (local sample), and ii) the Ryder Trauma Center CARE database. De-identified case records were included for all patients who presented following automobile collisions (i.e. excluding motorcycle, bicycle, etc.) and were listed as vehicle occupants (i.e. excluding pedestrian hit by car). Patients were further categorized by mortality and hospital admission. A convolutional neural network (CNN) was trained to predict clinical outcomes and its performance was evaluated.

Table 1			
	Acute Sample	Admitted Sample	
Sample Size	17,088	16,287	
Age (years)	36.2 ± 18.4	37.2 ± 19.4	
Glasgow Coma Scale (GCS)	13.2 ± 3.1	13.3 ± 3.4	
Injury Severity Score (ISS)	14.0 ±12.9	14.0 ±13.1	
No. patients deceased	437 (2.6%)	1,070 (6.6%)	
Time to admit (min)		555.3 ±426.6	

Sample characteristics

Table 2				
Mortality	Acute	Delayed		
AUROC	0.96	0.97		
Sensitivity	0.97	0.92		
Specificity	0.93	0.90		
PPV	0.93	0.90		
NPV	0.97	0.92		
LOS	Admission Sample	≤ 95 th Percentile		
Mean absolute error	±4.23 days	±2.23 days		
Model performance				
Figure 1				
Miami MVC Morbidity & Morta Acote Mortility (at series) Acote Acote Mortility (at series) Acote Acot	-	nghil course) & Oversil Langsh of Stay (LOS)		
Web-Based Application				

Iterative mean absolute error for length of stay model

Conclusions

Our CNN-derived models predict clinical outcomes following MVC trauma with high accuracy. This demonstrates the first application of machinelearning to the prediction of MVC clinical outcomes.

Our web-based application is available to clinicians for free use at M5.med.miami.edu

References

 Blincoe LJ MT, Zaloshnja E, Lawrence BA. The economic and societal impact of motor vehicle crashes, 2010 (revised). National Highway Traffic Safety Administration;2015. DOT HS 812 013.
 Rating the severity of tissue damage. I. The abbreviated scale. Jama. 1971;215(2):277-280.
 Baker SP, O'Neill B, Haddon W, Jr., Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. The Journal of trauma. 1974;14(3):187-196.

Acknowledgements

We thank the Ryder Trauma Center research staff for their assistance in data acquisition. We thank Roberto Suazo for his assistance in graphic design.