

Computer-designed PEEK Implants Versus Titanium Mesh in Alloplastic Cranioplasty: A Retrospective Single-Surgeon Study

Irfan Nawaz FRCS; Zhi Yang Ng MBChB

Department of Plastic Reconstructive and Aesthetic Surgery, KK Women's and Children's Hospital, Singapore Division of Neurosurgery, Changi General Hospital, Singapore

Introduction

Polyetheretherketone (PEEK) has emerged as one of the most promising alloplastic materials for calvarial reconstruction due to a number of desirable qualities including:

- resistance to heat and ionizing radiation
- biocompatibility
- biomechanically similar to native bone
- non-ferromagnetic for postoperative monitoring [1]

We aimed to evaluate and compare the outcomes of alloplastic cranioplasty performed with PEEK and titanium mesh (± reinforcement with acrylic cement (AC)) which has previously recorded many successes with low complication rates [2].

Methods

- Retrospective, single-surgeon, single-center study
- January 2008 to December 2012
- 24 patients (75% male) had initial decompressive craniectomy for intra- and extra-axial hemorrhage
- Titanium meshes (n=12) were fashioned intra-operatively (reinforced with AC, n=7); PEEK implants (n=12) were prefabricated from high resolution CT scans
- On-going outpatient follow-up

Results Means:

- age = 42 years (16 67)
- interval to surgery = 10 months (3 - 40)
- defect size = 12 x 9 cm (7 x 6 -15 x 10)
- duration of surgery = 181 minutes (100 - 275)
- hospital stay = 13 days (4 80)
- follow-up = 11 months (1 32)

Cranial defects were located bifrontally (n=3, 13%) and over the temporo-parietal region; the scalp was closed primarily in all cases

Figure 1A

Focal dehiscent titanium mesh

communicating with the overlying scalp at

20 months post-operative

Results (cont'd)

7 patients with titanium mesh cranioplasties (3 of which were titanium-AC) had post-operative complications including wound breakdown (Figure 1) and implant exposure. This culminated in implant removal in 6 (3 each of titanium only and titanium-AC), 4 of which required further plastics flap coverage.

PEEK cranioplasty patients had an otherwise uneventful post-operative recovery for a similar follow-up period. Sub-group analysis showed no significant difference between the three cranioplasty groups.

Collections of fluid internal and external to titanium mesh with rim enhancement and a few enhancing locules at 1 month postoperative, consistent with signs of clinical infection

Conclusions

Early results suggest that PEEK may be a superior alloplastic cranioplasty material because:

- it does not migrate through the overlying skin flap like titanium meshes and
- avoids the highly exothermic reaction associated with the use of acrylic cement and this may compromise tissue viability

Longer-term follow-up and greater patient numbers are required for statistical significance.

Learning Objectives

By the conclusion of this session, participants should be able to:

- recognize and appreciate the properties of PEEK implants
- identify the different materials used in alloplastic cranioplasty (PEEK, titanium, acrylic)
- suggest why PEEK may be superior to titanium for cranioplasty

References

[1] Hanasono MM, Goel N, DeMonte F. Calvarial reconstruction with polyetheretherketone implants. Ann Plast Surg. 2009; 62(6): 653-655.

[2] Janecka IP. New reconstructive technologies in skull base surgery: role of titanium mesh and porous polyethylene. Arch Otolaryngol Head Neck Surg. 2000; 126(3):396-401.