

The Role of Surgical Resection of Melanoma Brain Metastases in the Immunotherapy Era

Christopher Alvarez-Breckenridge; Anita Giobbie-Hurder; Corey Gill BS; Mia Bertalan BS; Naema Nayyar; Daniel P. Cahill

MD; Ryan Sullivan MD; Priscilla Brastianos MD

Massachusetts General Hospital, Boston MA

Introduction

Immune checkpoint blockade is a treatment option for patients with melanoma brain metastases (MBM). This single institutional analysis attempted to determine the optimal management for patients with MBM undergoing craniotomy for tumor resection and immunotherapy.

Methods

An IRB approved retrospective study identified 142 MBM patients treated with immune checkpoint blockade between 2010 and 2015. Overall survival (OS) was calculated from date of diagnosis of brain metastasis until death from any cause. Model building included a prognostic model of overall survival, the effect of sequencing of immunotherapy and surgery on overall survival, and the effect of treatment sequencing on overall survival. Parallel model-building techniques were used to address the potential for guarantee-time bias.

Results

The 2-year OS for patients treated with CTLA-4, PD-1 or combinatorial blockade were 19%, 54%, and 57%, respectively. Accounting for the timedependent covariate of surgery, factors associated with increased hazard of death included abnormal LDH, presence of extracranial disease at time of brain metastasis diagnosis, and greater than 3 brain metastases. The sequence of therapy was significantly related to survival with a 2.1-fold increase in the hazard of death when comparing patients undergoing immunotherapy +/- surgery compared to surgery + immunotherapy (HR: 2.1, 95% CI: 1.2 to 3.9, P=0.01). Patients undergoing immunotherapy prior to brain metastases diagnosis +/- surgery had a statistically significant 2.3-fold increase in the hazard of death (HR: 2.29, 95% CI: 1.2 to 4.4).

	Surgery (n=79)	No Surgery (n=63)	Р
Female	27 (34.2)	21 (33.3)	0.99ª
Age at Primary Diagnosis (Years)	55.6 ± 15.2	58.1 ± 15.1	0.40 ^b
Age at CNS Metastasis Diagnosis (Years)	60.0 ± 14.5	62.0 ± 15.2	0.53 ^b
Time to CNS Metastasis (Years)	4.4 ± 5.4	4.0 ± 4.3	0.75 ^b
Initial Location of CNS Metastases			0.29°
Supratentorial	58 (73.4)	49 (77.8)	
Infratentorial	3 (3.8)	5 (7.9)	
Both	18 (22.8)	9 (14.3)	
Initial Number of CNS Metastases			0.72°
1	38 (48.1)	31 (49.2)	
2	14 (17.7)	9 (14.3)	
3	8 (10.1)	4 (6.4)	
More than 3	19 (24.1)	19 (30.2)	

Table 1: Prognostic model of overall survival					
		Hazar d	95% H Ra Confie	tio dence	
Predictor		Ratio	Lim	nits	P-value
LDH	Abnormal vs. Normal/Missing	1.93	1.17	3.18	0.01
Presence of extracranial disease at time of CNS diagnosis	Yes vs. No	2.99	1.18	7.57	0.02
Number of CNS mets	1,2,3 vs. > 3	0.46	0.27	0.78	0.004
Synchronous CNS diagnosis	Yes vs. No	0.57	0.33	0.99	0.045
ECOG PS	2,3, or 4 vs. 0, 1	2.41	1.24	4.71	0.03

his de Brenner e d'a mandal ad an

Table 2. Deadletone of summinal encounter summinal.	
Table 2: Predictors of survival amongst surgical	patients

0.84 0.43 1.64

Missing vs. 0, 1

Predictor		Hazard Ratio	95% H Ra Confie Lim	tio dence	P-value
WBRT	Yes vs. No	3.01	1.56	5.82	0.001
CTLA-4 blockade prior to brain metastases diagnosis	Yes vs. No	2.76	1.34	5.70	0.006
Age primary diagnosis	> 58 vs. ≤ 58 years	2.71	1.41	5.21	0.003

Table 3: Predictors of survival controlling for the timedependent covariate of surgery

Predictor		Hazard Ratio	95% H Ra Confic Lim	tio dence	P-value
LDH	Abnormal vs. Normal/Missing	1.68	1.04	2.69	0.03
Presence of extracranial disease at time of CNS diagnosis	Yes vs. No	3.16	1.20	8.31	0.02
Number of CNS mets	1,2,3 vs. > 3	0.53	0.32	0.86	0.01
Treatment Sequence	Imm±surg vs. Surg-Im	1.97	0.99	3.93	0.04
	Im < CNS mets±Surg vs. Surg-Im *	2.29	1.20	4.36	

	Surgery (n=79)	No Surgery (n=63)	Р
ECOG			0.50°
0 (?0-1?)	31 (43.7)	26 (50.0)	
1	30 (42.3)	18 (34.6)	
2	6 (8.5)	6 (11.5)	
3-4	4 (5.6)	1 (1.9)	
4	0 (0.0)	1 (1.9)	
Radiation Therapy	74 (93.7)	49 (77.8)	0.007ª
WBRT	25 (31.7)	17 (27.0)	0.58ª
Immunotherapy Before Surgery (%)	48 (60.8)	N/A	N/A
Ipilimumab	67 (84.8)	54 (85.7)	0.99ª
PD on Ipilimumab	60 (89.6)	52 (96.3)	0.30ª
Ipilimumab/Nivolumab	5 (6.3)	3 (4.8)	0.99ª
PD on Ipilimumab/Nivolumab	5 (100.0)	3 (100.0)	-
Anti-PD1 mAb	33 (41.8)	29 (46.0)	0.73ª
PD on Anti-PD1 mAb	21 (61.8)	18 (62.1)	0.99ª

Conclusions

This single institutional analysis demonstrated that the sequence of surgery and immunotherapy is associated with OS. Surgery followed by immunotherapy resulted in the longest OS for patents with newly diagnosed melanoma brain metastases, suggesting that surgical resection should be considered prior to commencing immunotherapy. A prospective, randomized trial comparing the sequence of surgery and immunotherapy for treatment naïve MBM is warranted.

Learning Objectives

-Surgery represents a critical adjunct for patients with MBM undergoing immunotherapy -The sequencing of surgery and immunotherapy has therapeutic implications

-Upfront surgical resection of intracranial disease represents a bridge towards achieving enhanced efficacy with immunotherapy