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Learning Objectives
By the conclusion of this session,
participants should be able to 1)
Identify some of the potential barriers
to cell replacement therapies (CRT) in
patients with acute spinal cord injury
(SCI), 2) Appreciate the means by
which CRT may benefit SCI patients,
3) Describe some of the goals of
future large animal and human trials
necessary to bring CRT to fruition as
an active therapeutic option.

Introduction
Spinal regenerative therapies, including
cell replacement therapies (CRT), are
rapidly gaining traction as viable
treatments for acute and chronic spinal
cord injury (SCI).  Cell rejection, however
has been demonstrated in xenograph,
alloraft and even autograft models.
Furthermore, the acutely injured spinal
cord is a highly inflammatory, inhospitable
environment for cell growth.  Many
authors have recommended waiting 7-10
days after injury in order to maximize cell
survival, but others have demonstrated
that longer wait times lead to greater glial
scar formation and less therapeutic benefit
to CRT.  Before such a treatments can
effectively be translated into clinical
practice, large animal data is needed to
characterize effective immunosuppression
protocols and long-term survival of grafted
cells in the potentially inhospitable milieu
of the acutely injured spinal cord. In the
present study, we characterize the survival
and maturation of clinical grade human
spinal stem cells (hNPCs) grafted in and
around the injury epicenter using a porcine
L3 contusion model.

Methods
Isoflurane-anesthetized adult Gottingen-
Minnesota minipigs (n=10) underwent 2-
level laminectomies (L2-L5) followed by L3
spinal contusion using a 5-mm-diameter
circular bar (peak force of 2.5kg at a
velocity of 3cm/sec).  At 24 hours post-
injury, animals received 12 bilateral
injections of hNPCs targeted in and around
the injury epicenter. After cell grafting,
animals were continuously
immunosuppressed with tacrolimus
(targeted blood level 50-60ng/ml) and
mycophenolate mofetil (30mg/kg/day).
During recovery, motor and sensory
function were periodically monitored for 4
weeks.  After survival, the presence of
grafted cells was confirmed after staining
spinal cord sections with a combination of
human-specific (hNUMA, HO14, hNSE,
hSYN) or non-specific (DCX, MAP2, CHAT,
GFAP, APC) antibodies.

Results
In all cell-grafted animals, hNUMA-
positive cells were readily identified.
Numerous terminally differentiated
grafted neurons with extensive axo-
dendritic sprouting were seen; these
exhibited hNSE and HO14
immunoreactivity. Similarly, a high
density of hSYN-positive terminals
derived from grafted neurons and
residing in the vicinity of host
neurons were also seen. A
moderate degree of inflammatory
change, as evidenced by the
appearance of reactive astrocytes
and microglia, was also identified.
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Conclusions
These data demonstrate that, using
this immunosuppression protocol,
xenograft cells grafted into the acutely
injured spinal cord can survive a
minimum of 4 weeks despite the
inflammatory, post-traumatic
environment.  These results, as well
as studies which have demonstrated
long-distance axonal growth and
synapse formation with improved
functional outcome, are encouraging
for the possibility of CRT becoming
viable therapeutic options for patients
with acute SCI.

This is, of course, a short-term
survival study.  Long-term studies are
still necessary. Future studies will also
seek to minimize immunosuppression
in allograft and autograft models to
support cell growth while minimizing
immunosuppressive toxicity.
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