

Prognostic Factors for Survival in Surgical Series of Symptomatic Metastatic Epidural Spinal Cord Compression: A Prospective North American Multi-Centre Study in 142 Patients

Anick Nater-Goulet MD; Michael G. Fehlings MD, PhD, FRCS(C), FACS; Lindsay Tetreault Bsc; Branko Kopjar MD; Paul M. Arnold MD; Mark B. Dekutoski MD; Joel Finkelstein MD; Charles Fisher MD; John France MD; Ziya L. Gokaslan MD; Laurence D. Rhines MD; Peter Rose; James M. Schuster MD

Results

Introduction

Metastatic Epidural Spinal Cord Compression (MESCC) affects up to 10% of cancer patients. If left untreated, MESCC leads to debilitating pain, irreversible neurological deficits associated with shortened survival and worsened quality of life. This study aims to identify the key survival predictive factors in MESCC patients who were surgically treated for a single symptomatic lesion.

Methods

142 MESCC patients were enrolled in a prospective NA multi-center study and followed for 12 months. Using univariate analyses, Kaplan-Meier methods, and log-rank tests the predictive value of several clinical variables were assessed. Non-collinear predictors with p < 0.05 in univariate analyses were included in the final Cox proportional hazards model.

Variable	Value	n (142)
Age, mean years (SD; median; range)	59.4 (11.97; 59.5; 29 - 85)	142
Female	59 (41.5%)	142
Comorbidities	108 (76.0%)	142
Cardiovascular	80 (74.0%)	
End-stage renal disease	1 (0.9%)	
Diabetes	16 (14.8%)	
Psychiatric	15 (13.9%)	
Stroke	1 (0.9%)	
Site of primary tumor		142
Lungs	34 (23.9%)	
Kidney	22 (15.5%)	
Breast	21 (14.8%)	
Prostate	19 (13.4%)	
Gastrointestinal	10 (7.0%)	
Unknown	17 (12.0%)	
Other	<u>19 (13.4%)</u>	
Other metastasis located outside the spine	86 (60.6%)	142
Bone metastases	18 (20.9%)	86
Visceral metastases	44 (51.2%)	86
Both bone and visceral metastases	24 (27.9%)	86
Number of vertebral body involved		142
_1	99 (69.7%)	
2	17 (12.0%)	
3	19 (13.4%)	
>4	7 (4.9%)	
Ability to walk 4 steps independently	102 (71.8%)	142
Bladder Bowel dystunction	24 (16.9%) 17 (12.0%)	141

Figure 2

Univariate analysis					
Predictors	HR	95% CL	р		
Growth of primary tumor (ref: Tomita Grade 1 vs Tomita Grade 2 & 3)	2.433	1.449 - 4.085	0.0008		
Gender (ref: Female vs Male)	1.592	1.027 - 2.469	0.0377		
Visceral metastasis (ref: no vs yes)	2.212	1.432 - 3.419	0.0003		
Extraspinal bony metastasis (ref: no vs yes)	1.858	1.204 - 2.868	0.0052		
Body Mass Index (BMI)	0.945	0.907 - 0.984	0.0062		
SF-36 physical component score	0.949	0.924 - 0.974	< 0.0001		
EQ-5D score	0.300	0.129 - 0.694	0.0049		
Oswestry Disability Index (ODI) score	1.014	1.003 - 1.024	0.0119		

Table 2

Cox regression analysis				
Predictors	HR	р		
Growth of primary tumor (ref: Tomita Grade 1 vs Tomita Grade 2 & 3)	2.818	0.0007		
Visceral metastasis (ref: no vs yes)	2.005	0.0044		
SF-36 physical component score	0.945	< 0.0001		
Table 3				

Conclusions

Slow growing tumor (Tomita Grade 1), absence of visceral metastasis, and lower degree of preoperative physical disability, as reflected by a higher score on the SF-36 physical component questionnaire, are good predictive factors for survival in selected patients who underwent surgical treatment for a focal symptomatic MESCC lesion.

References

(1) Prasad D & Schiff D. Malignant spinal-cord compression. Lancet Oncol. 2005; (2) Sciubba DM et al. Diagnosis and management of metastatic spine disease. A review. J Neurosurg Spine. 2010; (3) Loblaw DA & Laperriere NJ. Emergency treatment of malignant extradural spinal cord compression: an evidencebased guideline. J Clin Oncol. 1998; (4) Patchell RA et al. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet. 2005